OFFSET
0,1
COMMENTS
Sum_{k>=2} (log(k) / k) is divergent but here, this series is convergent. If v(k) = log(k!) / k!, we have 0 <= v(k) <= w(k) = k^2/k! with w(k) that is convergent, hence, this positive series is convergent.
REFERENCES
J.-M. Monier, Analyse, Tome 3, 2ème année, MP.PSI.PC.PT, Dunod, 1997, Exercice 3.2.13.b p. 250.
FORMULA
Equals Sum_{k>=2} (log(k!) / k!).
EXAMPLE
0.8286471276718785080389169468558478918...
MAPLE
sum(log(n!)/n!, n=2..infinity);
PROG
(PARI) sumpos(k=2, log(k!)/k!) \\ Michel Marcus, Mar 17 2022
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Bernard Schott, Mar 17 2022
STATUS
approved