login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099769
Decimal expansion of Sum_{n >= 2} (-1)^n/log(n).
13
9, 2, 4, 2, 9, 9, 8, 9, 7, 2, 2, 2, 9, 3, 8, 8, 5, 5, 9, 5, 9, 5, 7, 0, 1, 8, 1, 3, 5, 9, 5, 9, 0, 0, 5, 3, 7, 7, 3, 3, 1, 9, 3, 9, 7, 8, 8, 6, 9, 1, 9, 0, 7, 4, 7, 7, 9, 6, 3, 0, 4, 3, 7, 2, 5, 0, 7, 0, 0, 5, 4, 1, 7, 1, 1, 4, 3, 4, 6, 8, 9, 7, 9, 8, 9, 9, 1, 3, 4, 7, 6, 6, 4, 9, 4, 6, 9, 1, 9, 5, 3, 5, 7, 4, 1, 4, 5, 2, 8
OFFSET
0,1
COMMENTS
A slowly converging series. The reference (R. E. Shafer) gives several methods for evaluating the sum.
Mathematica program derived from method #3 in the reference (R. E. Shafer). - Ryan Propper, Sep 25 2006
This alternating slowly convergent series may also be efficiently computed via a rapidly convergent integral (see my formula below). I used this formula and PARI to compute 1000 digits of it. - Iaroslav V. Blagouchine, May 11 2015
REFERENCES
C. C. Grosjean, An Euler-Maclaurin type asymptotic series expansion of the Sum_{n=2..oo} (-1)^n/ln(n), Simon Stevin, Vol. 65 (1991), pp. 31-55.
LINKS
Iaroslav V. Blagouchine, Table of n, a(n) for n = 0..1000
D. A. MacDonald, A note on the summation of slowly convergent alternating series, BIT Numerical Mathematics, Vol. 36 (1996), pp. 766-774.
Mathematics Stack Exchange, Sum_{n=2..oo} (-1)^n/log(n) = ?, 2018.
R. E. Shafer (proposer), Problem 89-15, SIAM Rev., Vol. 31, No. 3 (1989), p. 495; Numerical Evaluation of a Slowly Convergent Series, Solution to Problem 89-15 by Alan Gibbs, ibid., Vol. 32, No. 3 (1990), pp. 481-483.
FORMULA
Equals 1/(2*log(2)) + 8*Integral_{x=0..infinity} arctan(x)/((log(4+4*x^2)^2+4*arctan(x)^2)*sinh(2*Pi*x)) dx. - Iaroslav V. Blagouchine, May 11 2015
From Amiram Eldar, Jun 29 2021: (Start)
Equals Integral_{x>=0} (1 - (1-2^(1-x))*zeta(x)) dx.
Equals Integral_{x>=0} (1 + Li(x, -1)) dx, where Li(s, z) is the polylogarithm function.
Both from Mathematics Stack Exchange. (End)
EXAMPLE
0.9242998972229388559595701813595900537733193978869190...
MAPLE
evalf(sum((-1)^n/log(n), n=2..infinity), 120); # Vaclav Kotesovec, May 11 2015
MATHEMATICA
Do[X = 2*i; T = Table[Table[0, {X}], {X}]; For[n = 2, n <= X, n++, T[[n, 2]] = Sum[(-1)^k/Log[k], {k, 2, n}]]; For[k = 2, k <= X, k++, For[n = 2, n <= X - k + 1, n++, T[[n, k+1]] = T[[n+1, k-1]] + 1/(T[[n+1, k]] - T[[n, k]])]]; Print[N[T[[2, X]], 50]], {i, 50}] (* Ryan Propper, Sep 25 2006 *)
digits = 105; NSum[(-1)^n/Log[n], {n, 2, Infinity}, WorkingPrecision -> digits+10, Method -> "AlternatingSigns"] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 12 2013 *)
1/(2*Log[2])+8*NIntegrate[ArcTan[x]/((Log[4+4*x^2]^2+4*ArcTan[x]^2)*Sinh[2*Pi*x]), {x, 0, Infinity}, WorkingPrecision -> 109] // RealDigits // First (* Jean-François Alcover, May 12 2015, after Iaroslav V. Blagouchine *)
PROG
(PARI) sumalt(n=2, (-1)^n/log(n)) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Apr 28 2007
(PARI) allocatemem(50000000);
default(realprecision, 1100); 1/(2*log(2)) + intnum(x=0, 1000, 8*atan(x)/((log(4+4*x^2)^2+4*atan(x)^2)*sinh(2*Pi*x))) \\ Iaroslav V. Blagouchine, May 11 2015
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
N. J. A. Sloane, Nov 11 2004
EXTENSIONS
a(9)-a(17) from Ryan Propper, Sep 25 2006
a(18)-a(104) from Herman Jamke (hermanjamke(AT)fastmail.fm), Apr 28 2007
STATUS
approved