login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099770
Expansion of 1/((1-x)*(1-x^2)*(1-x^4)*(1-x^6)).
1
1, 1, 2, 2, 4, 4, 7, 7, 11, 11, 16, 16, 23, 23, 31, 31, 41, 41, 53, 53, 67, 67, 83, 83, 102, 102, 123, 123, 147, 147, 174, 174, 204, 204, 237, 237, 274, 274, 314, 314, 358, 358, 406, 406, 458, 458, 514, 514, 575, 575, 640, 640, 710, 710, 785, 785, 865, 865, 950, 950, 1041, 1041
OFFSET
0,3
COMMENTS
Molien series for symmetrized weight enumerators of Hermitian self-dual codes over the Galois ring GR(4,2).
Number of partitions of n into parts 1, 2, 4, and 6. - Joerg Arndt, May 05 2014
a(n) is equal to the number of partitions of degree at most n+6 of length 3 with even entries. - John M. Campbell, Jan 20 2016
LINKS
G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
Index entries for linear recurrences with constant coefficients, signature (1,1,-1,1,-1,0,0,-1,1,-1,1,1,-1).
FORMULA
a(n) ~ 1/288*n^3. - Ralf Stephan, Apr 29 2014
It appears that a(n) = (2*n^3 +39*n^2 +241*n +372 +3*(n^2 +13*n +40) * (-1)^n -84*(-1)^((2*n +3 +(-1)^n)/4) -192*floor(((2*n +9 +(-1)^n-6*(-1)^((2*n+3+(-1)^n)/4))/24)))/576. - Luce ETIENNE, May 05 2014
EXAMPLE
From John M. Campbell, Jan 20 2016: (Start)
Letting n=6, a(n) = 7 is equal to the number of partitions of n into parts 1, 2, 4, and 6, as illustrated below, and a(n) is equal to the number of partitions of degree at most n+6 of length 3 with even entries, as illustrated below. The arrows below illustrate a natural bijection between the set of partitions of the former form and the set of partitions of the latter form.
(2, 2, 2) <-> (1, 1, 1, 1, 1, 1)
(4, 2, 2) <-> (2, 1, 1, 1, 1)
(6, 2, 2) <-> (4, 1, 1)
(4, 4, 2) <-> (2, 2, 1, 1)
(8, 2, 2) <-> (6)
(6, 4, 2) <-> (4, 2)
(4, 4, 4) <-> (2, 2, 2)
(End)
MAPLE
seq(coeff(series(1/((1-x)*(1-x^2)*(1-x^4)*(1-x^6)), x, n+1), x, n), n = 0 .. 65); # G. C. Greubel, Sep 04 2019
MATHEMATICA
CoefficientList[Series[1/((1-x)*(1-x^2)*(1-x^4)*(1-x^6)), {x, 0, 65}], x] (* G. C. Greubel, Sep 04 2019 *)
PROG
(PARI) Vec(1/((1-x)*(1-x^2)*(1-x^4)*(1-x^6)) + O(x^80)) \\ Michel Marcus, Jan 21 2016
(Magma) R<x>:=PowerSeriesRing(Integers(), 65); Coefficients(R!( 1/((1-x)*(1-x^2)*(1-x^4)*(1-x^6)) )); // G. C. Greubel, Sep 04 2019
(Sage)
def A099770_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P(1/((1-x)*(1-x^2)*(1-x^4)*(1-x^6))).list()
A099770_list(65) # G. C. Greubel, Sep 04 2019
(GAP) a:=[1, 1, 2, 2, 4, 4, 7, 7, 11, 11, 16, 16, 23];; for n in [14..65] do a[n]:= a[n-1]+a[n-2]-a[n-3]+a[n-4]-a[n-5]-a[n-8]+a[n-9]-a[n-10]+a[n-11]+a[n-12] -a[n-13]; od; a; # G. C. Greubel, Sep 04 2019
CROSSREFS
Cf. A000601.
Sequence in context: A341951 A182410 A341719 * A099383 A341972 A277133
KEYWORD
nonn
AUTHOR
G. Nebe (nebe(AT)math.rwth-aachen.de), Nov 10 2004
STATUS
approved