OFFSET
0,3
COMMENTS
For an integer partition n = c(1)*1 + c(2)*2 + ... + c(n)*n, construct the set of all positive c(i) occurring at least one time.
a(n) is the number of distinct such sets in all integer partitions of n.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..170
EXAMPLE
For n=8 the 11 possible sets are {1}, {2}, {4}, {8}, {1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6}, {2, 3} and {2, 4}.
MAPLE
b:= proc(n, i) option remember; `if`(n=0, {{}}, `if`(i=1, {{n}},
{b(n, i-1)[], seq(map(x-> {x[], j}, b(n-i*j, i-1))[], j=1..n/i)}))
end:
a:= n-> nops(b(n, n)):
seq(a(n), n=0..50); # Alois P. Heinz, Aug 09 2012
MATHEMATICA
Table[Length@ Union@ Map[Union@(Length /@ Split[#]) &, IntegerPartitions[n]], {n, 1, 20}]
PROG
(Python)
from sympy.utilities.iterables import partitions
def A182410(n): return len({tuple(sorted(set(p.values()))) for p in partitions(n)}) # Chai Wah Wu, Sep 10 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Olivier Gérard, May 09 2012
STATUS
approved