login
A200282
Decimal expansion of greatest x satisfying 3*x^2 - 4*cos(x) = 3*sin(x).
3
1, 1, 9, 2, 4, 0, 4, 5, 5, 0, 0, 7, 6, 8, 1, 5, 6, 5, 9, 2, 9, 0, 0, 9, 5, 4, 9, 6, 6, 1, 3, 6, 9, 0, 6, 9, 9, 6, 9, 8, 5, 2, 7, 5, 5, 6, 4, 2, 1, 0, 0, 3, 5, 5, 4, 4, 8, 2, 3, 5, 9, 1, 8, 3, 1, 4, 6, 8, 9, 9, 9, 4, 8, 6, 2, 2, 0, 2, 9, 2, 8, 7, 6, 5, 4, 6, 6, 0, 4, 1, 8, 0, 2, 4, 6, 8, 3, 0, 1
OFFSET
1,3
COMMENTS
See A199949 for a guide to related sequences. The Mathematica program includes a graph.
LINKS
EXAMPLE
least x: -0.6615723781879899920628993073289...
greatest x: 1.19240455007681565929009549661...
MATHEMATICA
a = 3; b = -4; c = 3;
f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -.67, -.66}, WorkingPrecision -> 110]
RealDigits[r] (* A200281 *)
r = x /. FindRoot[f[x] == g[x], {x, 1.1, 1.2}, WorkingPrecision -> 110]
RealDigits[r] (* A200282 *)
PROG
(PARI) a=3; b=-4; c=3; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jul 07 2018
CROSSREFS
Cf. A199949.
Sequence in context: A248322 A248321 A248320 * A133841 A099769 A176517
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 15 2011
STATUS
approved