login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A200283 Decimal expansion of least x satisfying 3*x^2 - 4*cos(x) = 4*sin(x), negated. 3
5, 9, 5, 9, 2, 9, 4, 5, 4, 1, 2, 0, 2, 2, 3, 4, 2, 6, 3, 2, 2, 3, 4, 8, 0, 6, 7, 3, 5, 2, 6, 2, 1, 4, 9, 7, 8, 7, 4, 8, 9, 4, 9, 4, 8, 5, 0, 7, 5, 1, 6, 1, 3, 7, 3, 9, 7, 9, 0, 9, 8, 6, 9, 1, 2, 5, 8, 6, 4, 4, 0, 4, 6, 2, 0, 4, 3, 4, 1, 3, 0, 8, 5, 5, 7, 1, 8, 2, 4, 9, 2, 8, 2, 6, 2, 1, 8, 7, 0 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

See A199949 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..10000

EXAMPLE

least x: -0.5959294541202234263223480673526214...

greatest x: 1.28612802674590996527915112614637...

MATHEMATICA

a = 3; b = -4; c = 4;

f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]

Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, -.6, -.59}, WorkingPrecision -> 110]

RealDigits[r]    (* A200283 *)

r = x /. FindRoot[f[x] == g[x], {x, 1.2, 1.3}, WorkingPrecision -> 110]

RealDigits[r]   (* A200284 *)

PROG

(PARI) a=3; b=-4; c=4; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jul 07 2018

CROSSREFS

Cf. A199949.

Sequence in context: A108781 A197693 A117014 * A010720 A094389 A057821

Adjacent sequences:  A200280 A200281 A200282 * A200284 A200285 A200286

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Nov 15 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 16 21:55 EDT 2021. Contains 345080 sequences. (Running on oeis4.)