login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A108781
Expansion of sqrt((1-x+8*x^2)/(1-x)^3).
1
1, 1, 5, 9, 5, -7, 5, 73, 69, -295, -571, 1321, 4613, -4167, -32635, -1783, 211141, 200601, -1229243, -2468375, 6117509, 22557305, -21519611, -176980023, -13664955, 1234115673, 1250908869, -7608051031, -16094268667, 39424807225, 153179607429, -139981878647, -1243776268859
OFFSET
0,3
LINKS
N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, arXiv:math/0509316 [math.NT], 2005-2006.
N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
FORMULA
D-finite with recurrence: n*a(n) +(-2*n+1)*a(n-1) +(9*n-25)*a(n-2) +4*(-2*n+5)*a(n-3)=0. - R. J. Mathar, Jan 24 2020
MATHEMATICA
CoefficientList[Series[Sqrt[(1-x+8x^2)/(1-x)^3], {x, 0, 50}], x] (* Harvey P. Dale, Dec 24 2018 *)
PROG
(Magma) m:=40; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!(Sqrt((1-x+8*x^2)/(1-x)^3))); // Vincenzo Librandi, Jan 25 2020
CROSSREFS
Square root of g.f. for A054552.
Sequence in context: A256593 A275810 A302708 * A197693 A117014 A200283
KEYWORD
sign
AUTHOR
STATUS
approved