login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A108784
Difference between A107757 and A107755.
3
1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1
OFFSET
1,1
COMMENTS
Of the 255 terms less than 10^4, 128 are positive.
LINKS
FORMULA
It appears that a(n) = A076826(2n)-1. - T. D. Noe, Jun 14 2007
a(n) = A107757(n) - A107755(n).
MAPLE
Maple code from R. J. Mathar, Feb 25 2008:
A000108 := proc(n) option remember ; binomial(2*n, n)/(n+1) ; end:
A107757 := proc(n) option remember ; local a; if n = 1 then 3; else for a from A107757(n-1)+1 do if add(A000108(k), k=1..a) mod 3 = 2 then RETURN(a) ; fi ; od: fi ; end:
A107755 := proc(n) option remember ; local a; if n = 1 then 2; else for a from A107755(n-1)+1 do if add(A000108(k), k=1..a) mod 3 = 0 then RETURN(a) ; fi ; od: fi ; end:
A108784 := proc(n) A107757(n)-A107755(n) ; end: seq(A108784(n), n=1..120) ;
MATHEMATICA
s0 = s2 = {}; s = 0; Do[s = Mod[s + (2 n)!/n!/(n + 1)!, 3]; Switch[ Mod[s, 3], 0, AppendTo[s0, n], 2, AppendTo[s2, n]], {n, 10^4}]; s2 - s0
CROSSREFS
KEYWORD
sign
AUTHOR
Robert G. Wilson v, Jun 14 2005
EXTENSIONS
Corrected by T. D. Noe, Jun 14 2007
STATUS
approved