login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of sqrt((1-x+8*x^2)/(1-x)^3).
1

%I #18 Sep 08 2022 08:45:19

%S 1,1,5,9,5,-7,5,73,69,-295,-571,1321,4613,-4167,-32635,-1783,211141,

%T 200601,-1229243,-2468375,6117509,22557305,-21519611,-176980023,

%U -13664955,1234115673,1250908869,-7608051031,-16094268667,39424807225,153179607429,-139981878647,-1243776268859

%N Expansion of sqrt((1-x+8*x^2)/(1-x)^3).

%H N. Heninger, E. M. Rains and N. J. A. Sloane, <a href="https://arxiv.org/abs/math/0509316">On the Integrality of n-th Roots of Generating Functions</a>, arXiv:math/0509316 [math.NT], 2005-2006.

%H N. Heninger, E. M. Rains and N. J. A. Sloane, <a href="https://doi.org/10.1016/j.jcta.2006.03.018">On the Integrality of n-th Roots of Generating Functions</a>, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.

%F D-finite with recurrence: n*a(n) +(-2*n+1)*a(n-1) +(9*n-25)*a(n-2) +4*(-2*n+5)*a(n-3)=0. - _R. J. Mathar_, Jan 24 2020

%t CoefficientList[Series[Sqrt[(1-x+8x^2)/(1-x)^3],{x,0,50}],x] (* _Harvey P. Dale_, Dec 24 2018 *)

%o (Magma) m:=40; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!(Sqrt((1-x+8*x^2)/(1-x)^3))); // _Vincenzo Librandi_, Jan 25 2020

%Y Square root of g.f. for A054552.

%K sign

%O 0,3

%A _N. J. A. Sloane_ and _Nadia Heninger_, Jun 28 2005