login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257972
Decimal expansion of Sum_{n=1..infinity} (-1)^(n-1)/(n - log(n)).
6
5, 4, 2, 6, 6, 6, 7, 3, 2, 5, 7, 0, 2, 8, 2, 7, 5, 4, 2, 8, 8, 8, 5, 0, 7, 4, 7, 6, 3, 9, 6, 2, 4, 7, 4, 8, 7, 9, 1, 4, 2, 0, 3, 6, 3, 7, 6, 3, 0, 9, 2, 7, 2, 0, 0, 9, 5, 0, 7, 8, 6, 6, 0, 1, 3, 8, 1, 0, 1, 1, 7, 9, 9, 6, 4, 3, 2, 3, 3, 3, 6, 7, 3, 6, 3, 9, 8, 3, 4, 5, 7, 0, 2, 2, 3, 6, 5, 4, 2, 0, 4, 8, 2, 8, 6, 3, 8, 5, 5
OFFSET
0,1
COMMENTS
This alternating series converges quite slowly, but can be efficiently computed via its integral representation (see my formula below), which converges exponentially fast. I used this formula and PARI to compute 1000 digits of this series. Modern CAS are also able to evaluate it very quickly and to a high degree of accuracy.
LINKS
Iaroslav V. Blagouchine, Table of n, a(n) for n = 0..1000
FORMULA
Equals 1/2 + integral_{x=0..infinity} (x-arctan(x))/(sinh(Pi*x)*((1-1/2*log(1+x^2))^2 + (x-arctan(x))^2)).
EXAMPLE
0.542666732570282754288850747639624748791420363763092...
MAPLE
evalf(sum((-1)^(n-1)/(n-log(n)), n = 1..infinity), 120);
evalf(1/2+Int((x-arctan(x))/(sinh(Pi*x)*((1-(1/2)*log(1+x^2))^2+(x-arctan(x))^2)), x = 0..infinity), 120);
MATHEMATICA
N[NSum[(-1)^(n-1)/(n-Log[n]), {n, 1, Infinity}, AccuracyGoal -> 120, Method -> "AlternatingSigns", WorkingPrecision -> 200], 119]
N[1/2 + NIntegrate[(x-ArcTan[x])/(Sinh[Pi*x]*((1-1/2*Log[1+x^2])^2 + (x-ArcTan[x])^2)), {x, 0, 1, Infinity}, AccuracyGoal -> 120, WorkingPrecision -> 200], 119] (* The integrand reaches a local maximum near x=1.02, so for better numerical accuracy, split the interval of integration into two or three parts. *)
PROG
(PARI) default(realprecision, 120); sumalt(n=1, (-1)^(n-1)/(n-log(n)))
(PARI) allocatemem(50000000);
default(realprecision, 1200); 1/2 + intnum(x=0, 1, (x-atan(x))/(sinh(Pi*x)*((1-0.5*log(1+x^2))^2 + (x-atan(x))^2))) + intnum(x=1, 3, (x-atan(x))/(sinh(Pi*x)*((1-0.5*log(1+x^2))^2 + (x-atan(x))^2))) + intnum(x=3, 1000, (x-atan(x))/(sinh(Pi*x)*((1-0.5*log(1+x^2))^2 + (x-atan(x))^2))) /* The integrand reaches a local maximum near x=1.02, so for better numerical accuracy, split the interval of integration into two or three parts. */
(Sage)
from mpmath import mp, nsum, inf
mp.dps = 110; mp.pretty = True
nsum(lambda n: (-1)^(n-1)/(n-log(n)), [1, inf], method='alternating') # Peter Luschny, May 17 2015
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
STATUS
approved