login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257969
Numbers m such that the sum of the digits (sod) of m, m^2, m^3, ..., m^9 are in arithmetic progression: sod(m^(k+1)) - sod(m^k) = f for k=1..8.
0
1, 10, 100, 1000, 7972, 10000, 53941, 79720, 100000, 134242, 539410, 698614, 797200, 1000000, 1342420, 5394100, 6986140, 7525615, 7972000, 9000864, 10000000, 10057054, 13424200, 15366307, 17513566, 20602674, 23280211, 24716905, 25274655, 25665559, 32083981, 34326702, 34446204, 34534816
OFFSET
1,2
COMMENTS
All powers of 10 are terms of this sequence.
If m is a term, then so is 10*m.
Number of terms < 10^k for k >= 1: 1, 2, 3, 5, 8, 13, 20, 62.
FORMULA
{m : sod(m^(k+1)) - sod(m^k) = f for k=1..8}.
EXAMPLE
7972 is in the sequence, because the difference between the successive sum-of-digit values is 15:
sod(7972) = 25;
sod(7972^2) = 40;
sod(7972^3) = 55;
sod(7972^4) = 70;
sod(7972^5) = 85;
sod(7972^6) = 100;
sod(7972^7) = 115;
sod(7972^8) = 130;
sod(7972^9) = 145;
sod(7972^10) = 178, where the increment is no longer 15.
But there are seven numbers below 10^9 with a longer sequence (namely, 134242, 23280211, 40809168, 46485637, 59716223, 66413917, and 97134912) where sod(m^(k+1)) - sod(m^k) = f for k=1..9.
sod(134242) = 16;
sod(134242^2) = 40;
sod(134242^3) = 64;
sod(134242^4) = 88;
sod(134242^5) = 112;
sod(134242^6) = 136;
sod(134242^7) = 160;
sod(134242^8) = 184;
sod(134242^9) = 208;
sod(134242^10) = 232;
sod(134242^11) = 283, where the increment is no longer 24.
MATHEMATICA
fQ[n_] := Block[{g}, g[x_] := Power[x, #] & /@ Range@ 9; Length@ DeleteDuplicates@ Differences[Total[IntegerDigits@ #] & /@ g@ n] == 1]; Select[Range@ 1000000, fQ] (* Michael De Vlieger, Jun 12 2015 *)
Select[Range[35*10^6], Length[Union[Differences[Total/@IntegerDigits[ #^Range[9]]]]] ==1&] (* Harvey P. Dale, Aug 23 2017 *)
PROG
(PARI) isok(n) = {my(osod = sumdigits(n^2)); my(f = osod - sumdigits(n)); for (k=3, 9, my(nsod = sumdigits(n^k)); if (nsod - osod != f, return (0)); osod = nsod; ); return (1); } \\ Michel Marcus, May 28 2015
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Pieter Post, May 15 2015
EXTENSIONS
Corrected and extended by Harvey P. Dale, Aug 23 2017
Edited by Jon E. Schoenfield, Mar 01 2022
STATUS
approved