Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 Mar 03 2022 05:14:50
%S 1,10,100,1000,7972,10000,53941,79720,100000,134242,539410,698614,
%T 797200,1000000,1342420,5394100,6986140,7525615,7972000,9000864,
%U 10000000,10057054,13424200,15366307,17513566,20602674,23280211,24716905,25274655,25665559,32083981,34326702,34446204,34534816
%N Numbers m such that the sum of the digits (sod) of m, m^2, m^3, ..., m^9 are in arithmetic progression: sod(m^(k+1)) - sod(m^k) = f for k=1..8.
%C All powers of 10 are terms of this sequence.
%C If m is a term, then so is 10*m.
%C Number of terms < 10^k for k >= 1: 1, 2, 3, 5, 8, 13, 20, 62.
%F {m : sod(m^(k+1)) - sod(m^k) = f for k=1..8}.
%e 7972 is in the sequence, because the difference between the successive sum-of-digit values is 15:
%e sod(7972) = 25;
%e sod(7972^2) = 40;
%e sod(7972^3) = 55;
%e sod(7972^4) = 70;
%e sod(7972^5) = 85;
%e sod(7972^6) = 100;
%e sod(7972^7) = 115;
%e sod(7972^8) = 130;
%e sod(7972^9) = 145;
%e sod(7972^10) = 178, where the increment is no longer 15.
%e But there are seven numbers below 10^9 with a longer sequence (namely, 134242, 23280211, 40809168, 46485637, 59716223, 66413917, and 97134912) where sod(m^(k+1)) - sod(m^k) = f for k=1..9.
%e sod(134242) = 16;
%e sod(134242^2) = 40;
%e sod(134242^3) = 64;
%e sod(134242^4) = 88;
%e sod(134242^5) = 112;
%e sod(134242^6) = 136;
%e sod(134242^7) = 160;
%e sod(134242^8) = 184;
%e sod(134242^9) = 208;
%e sod(134242^10) = 232;
%e sod(134242^11) = 283, where the increment is no longer 24.
%t fQ[n_] := Block[{g}, g[x_] := Power[x, #] & /@ Range@ 9; Length@ DeleteDuplicates@ Differences[Total[IntegerDigits@ #] & /@ g@ n] == 1]; Select[Range@ 1000000, fQ] (* _Michael De Vlieger_, Jun 12 2015 *)
%t Select[Range[35*10^6],Length[Union[Differences[Total/@IntegerDigits[ #^Range[9]]]]] ==1&] (* _Harvey P. Dale_, Aug 23 2017 *)
%o (PARI) isok(n) = {my(osod = sumdigits(n^2)); my(f = osod - sumdigits(n)); for (k=3, 9, my(nsod = sumdigits(n^k)); if (nsod - osod != f, return (0)); osod = nsod;); return (1);} \\ _Michel Marcus_, May 28 2015
%Y Cf. A061209, A115518, A257784, A258722.
%K nonn,base
%O 1,2
%A _Pieter Post_, May 15 2015
%E Corrected and extended by _Harvey P. Dale_, Aug 23 2017
%E Edited by _Jon E. Schoenfield_, Mar 01 2022