The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A257784 Numbers n such that the sum of the digits squared times the sum of the digits of n to some power equals n. 7
 0, 1, 512, 2511, 4913, 5832, 17576, 19683, 24624, 32144, 37000, 111616, 382360, 415000, 420224, 2219400, 14041600, 16328000, 19300032, 30681423, 39203125, 62025728, 78535423, 186836625, 214292000, 432265248, 1120141312, 3479669440, 18529084125, 25342447725 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS When the power is 1 the numbers are the cubes of their digit sum (A061209). There are no 2-digit and 18-digit terms. - Chai Wah Wu, Jan 11 2016 LINKS Giovanni Resta and Chai Wah Wu, Table of n, a(n) for n = 1..80 n = 1..43 from Giovanni Resta EXAMPLE For power 2: 24624 = (2+4+6+2+4)^2*(2^2+4^2+6^2+2^2+4^2). For power 3: 111616 = (1+1+1+6+1+6)^2*(1^3+1^3+1^3+6^3+1^3+6^3). PROG (Python) # WARNING: this prints numbers in the sequence, but not in increasing order. def moda(n, a):     kk = 0     while n > 0:         kk= kk+(n%10)**a         n =int(n//10)     return kk def sod(n):     kk = 0     while n > 0:         kk= kk+(n%10)         n =int(n//10)     return kk for a in range (1, 10):     for c in range (1, 10**8):         if c==sod(c)**2*moda(c, a):             print(c, end=", ") CROSSREFS Cf. A061209, A115518, A130680. Sequence in context: A255756 A254845 A254838 * A254020 A254894 A254013 Adjacent sequences:  A257781 A257782 A257783 * A257785 A257786 A257787 KEYWORD base,nonn AUTHOR Pieter Post, May 08 2015 EXTENSIONS a(16)-a(30) from Giovanni Resta, May 09 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 16 05:55 EDT 2022. Contains 356160 sequences. (Running on oeis4.)