|
|
A257783
|
|
Number T(n,k) of words w of length n such that each letter of the k-ary alphabet is used at least once and for every prefix z of w we have #(z,a_i) = 0 or #(z,a_i) >= #(z,a_j) for all j>i and #(z,a_i) counts the occurrences of the i-th letter in z; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
|
|
11
|
|
|
1, 0, 1, 0, 1, 2, 0, 1, 3, 6, 0, 1, 7, 12, 24, 0, 1, 12, 35, 60, 120, 0, 1, 25, 87, 210, 360, 720, 0, 1, 44, 232, 609, 1470, 2520, 5040, 0, 1, 89, 599, 1961, 4872, 11760, 20160, 40320, 0, 1, 160, 1591, 5952, 17649, 43848, 105840, 181440, 362880, 0, 1, 321, 4202, 19255, 60465, 176490, 438480, 1058400, 1814400, 3628800
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,6
|
|
COMMENTS
|
Row n is the inverse binomial transform of the n-th row of array A213276.
|
|
LINKS
|
Alois P. Heinz, Rows n = 0..20, flattened
|
|
FORMULA
|
T(n,k) = Sum_{i=0..k} (-1)^i * C(k,i) * A213276(n,k-i).
|
|
EXAMPLE
|
T(5,2) = 12: aaaab, aaaba, aaabb, aabaa, aabab, aabba, abaaa, abaab, ababa, baaaa, baaab, baaba.
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 2;
0, 1, 3, 6;
0, 1, 7, 12, 24;
0, 1, 12, 35, 60, 120;
0, 1, 25, 87, 210, 360, 720;
0, 1, 44, 232, 609, 1470, 2520, 5040;
0, 1, 89, 599, 1961, 4872, 11760, 20160, 40320;
|
|
CROSSREFS
|
Columns k=0-10 give: A000007, A057427, A321838, A321839, A321840, A321841, A321842, A321843, A321844, A321845, A321846.
Main diagonal gives A000142.
T(n+1,n) = A001710(n+1) (for n>0).
Cf. A213276.
Sequence in context: A195772 A330618 A062104 * A226874 A267901 A276561
Adjacent sequences: A257780 A257781 A257782 * A257784 A257785 A257786
|
|
KEYWORD
|
nonn,tabl
|
|
AUTHOR
|
Alois P. Heinz, May 08 2015
|
|
STATUS
|
approved
|
|
|
|