login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A257783 Number T(n,k) of words w of length n such that each letter of the k-ary alphabet is used at least once and for every prefix z of w we have #(z,a_i) = 0 or #(z,a_i) >= #(z,a_j) for all j>i and #(z,a_i) counts the occurrences of the i-th letter in z; triangle T(n,k), n>=0, 0<=k<=n, read by rows. 11
1, 0, 1, 0, 1, 2, 0, 1, 3, 6, 0, 1, 7, 12, 24, 0, 1, 12, 35, 60, 120, 0, 1, 25, 87, 210, 360, 720, 0, 1, 44, 232, 609, 1470, 2520, 5040, 0, 1, 89, 599, 1961, 4872, 11760, 20160, 40320, 0, 1, 160, 1591, 5952, 17649, 43848, 105840, 181440, 362880, 0, 1, 321, 4202, 19255, 60465, 176490, 438480, 1058400, 1814400, 3628800 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,6

COMMENTS

Row n is the inverse binomial transform of the n-th row of array A213276.

LINKS

Alois P. Heinz, Rows n = 0..20, flattened

FORMULA

T(n,k) = Sum_{i=0..k} (-1)^i * C(k,i) * A213276(n,k-i).

EXAMPLE

T(5,2) = 12: aaaab, aaaba, aaabb, aabaa, aabab, aabba, abaaa, abaab, ababa, baaaa, baaab, baaba.

Triangle T(n,k) begins:

  1;

  0, 1;

  0, 1,  2;

  0, 1,  3,   6;

  0, 1,  7,  12,   24;

  0, 1, 12,  35,   60,  120;

  0, 1, 25,  87,  210,  360,   720;

  0, 1, 44, 232,  609, 1470,  2520,  5040;

  0, 1, 89, 599, 1961, 4872, 11760, 20160, 40320;

MATHEMATICA

g[l_, i_] := Module[{j}, If[l[[i]] < 1, Return[False], If[l[[i]] > 1, For[j = i + 1, j <= Length[l], j++, If[l[[i]] <= l[[j]], Return[False], If[l[[j]] > 0, Break[]]]]]]; True];

b[l_] := b[l] = If[Complement[l, {0}] == {}, 1, Sum[If[g[l, i], b[ReplacePart[l, i -> l[[i]] - 1]], 0], {i, 1, Length[l]}]];

h[n_, k_, m_, l_] := h[n, k, m, l] = If[n == 0 && k === 0, b[l], If[k == 0 || n > 0 && n < m, 0, Sum[h[n - j, k - 1, Max[m, j], Join[{j}, l]], {j, Max[1, m], n}] + h[n, k - 1, m, Join[{0}, l]]]];

A[n_, k_] := h[n, k, 0, {}];

T[n_, k_] := Sum[(-1)^i*Binomial[k, i]*A[n, k - i], {i, 0, k}];

Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 01 2022, after Alois P. Heinz in A213276 *)

CROSSREFS

Columns k=0-10 give: A000007, A057427, A321838, A321839, A321840, A321841, A321842, A321843, A321844, A321845, A321846.

Main diagonal gives A000142.

T(n+1,n) = A001710(n+1) (for n>0).

Cf. A213276.

Sequence in context: A195772 A330618 A062104 * A226874 A267901 A276561

Adjacent sequences:  A257780 A257781 A257782 * A257784 A257785 A257786

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, May 08 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 24 16:41 EDT 2022. Contains 356943 sequences. (Running on oeis4.)