login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A226874 Number T(n,k) of n-length words w over a k-ary alphabet {a1, a2, ..., ak} such that #(w,a1) >= #(w,a2) >= ... >= #(w,ak) >= 1, where #(w,x) counts the letters x in word w; triangle T(n,k), n >= 0, 0 <= k <= n, read by rows. 19
1, 0, 1, 0, 1, 2, 0, 1, 3, 6, 0, 1, 10, 12, 24, 0, 1, 15, 50, 60, 120, 0, 1, 41, 180, 300, 360, 720, 0, 1, 63, 497, 1260, 2100, 2520, 5040, 0, 1, 162, 1484, 6496, 10080, 16800, 20160, 40320, 0, 1, 255, 5154, 20916, 58464, 90720, 151200, 181440, 362880 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,6

COMMENTS

T(n,k) is the sum of multinomials M(n; lambda), where lambda ranges over all partitions of n into parts that form a multiset of size k.

LINKS

Alois P. Heinz, Rows n = 0..140, flattened

Wikipedia, Iverson bracket

Wikipedia, Multinomial coefficients

Wikipedia, Partition (number theory)

FORMULA

T(n,k) = A226873(n,k) - [k>0] * A226873(n,k-1).

EXAMPLE

T(4,2) = 10: aaab, aaba, aabb, abaa, abab, abba, baaa, baab, baba, bbaa.

T(4,3) = 12: aabc, aacb, abac, abca, acab, acba, baac, baca, bcaa, caab, caba, cbaa.

T(5,2) = 15: aaaab, aaaba, aaabb, aabaa, aabab, aabba, abaaa, abaab, ababa, abbaa, baaaa, baaab, baaba, babaa, bbaaa.

Triangle T(n,k) begins:

1;

0, 1;

0, 1, 2;

0, 1, 3, 6;

0, 1, 10, 12, 24;

0, 1, 15, 50, 60, 120;

0, 1, 41, 180, 300, 360, 720;

0, 1, 63, 497, 1260, 2100, 2520, 5040;

0, 1, 162, 1484, 6496, 10080, 16800, 20160, 40320;

...

MAPLE

b:= proc(n, i, t) option remember;

`if`(t=1, 1/n!, add(b(n-j, j, t-1)/j!, j=i..n/t))

end:

T:= (n, k)-> `if`(n*k=0, `if`(n=k, 1, 0), n!*b(n, 1, k)):

seq(seq(T(n, k), k=0..n), n=0..12);

# second Maple program:

b:= proc(n, i) option remember; expand(

`if`(n=0, 1, `if`(i<1, 0, add(x^j*b(n-i*j, i-1)*

combinat[multinomial](n, n-i*j, i$j), j=0..n/i))))

end:

T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2)):

seq(T(n), n=0..12);

MATHEMATICA

b[n_, i_, t_] := b[n, i, t] = If[t == 1, 1/n!, Sum[b[n - j, j, t - 1]/j!, {j, i, n/t}]]; t[n_, k_] := If[n*k == 0, If[n == k, 1, 0], n!*b[n, 1, k]]; Table[Table[t[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 13 2013, translated from first Maple *)

PROG

(PARI)

T(n)={Vec(serlaplace(prod(k=1, n, 1/(1-y*x^k/k!) + O(x*x^n))))}

{my(t=T(10)); for(n=1, #t, for(k=0, n-1, print1(polcoeff(t[n], k), ", ")); print)} \\ Andrew Howroyd, Dec 20 2017

CROSSREFS

Columns k=0-10 give: A000007, A057427, A226881, A226882, A226883, A226884, A226885, A226886, A226887, A226888, A226889.

Main diagonal gives: A000142.

Row sums give: A005651.

T(2n,n) gives A318796.

Cf. A131632, A285824, A292222, A327803.

Sequence in context: A330618 A062104 A257783 * A267901 A276561 A325746

Adjacent sequences: A226871 A226872 A226873 * A226875 A226876 A226877

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, Jun 21 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 30 01:31 EST 2022. Contains 358431 sequences. (Running on oeis4.)