login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226876
Number of n-length words w over a 6-ary alphabet {a1,a2,...,a6} such that #(w,a1) >= #(w,a2) >= ... >= #(w,a6) >= 0, where #(w,x) counts the letters x in word w.
4
1, 1, 3, 10, 47, 246, 1602, 6441, 35023, 175510, 1017158, 5412111, 33991322, 168112907, 982269641, 5378704155, 31714236863, 174819971462, 1082436507990, 5756932808211, 34302363988462, 193719726696345, 1150224854410151, 6482217725030141, 39812123155826626
OFFSET
0,3
LINKS
MAPLE
b:= proc(n, i, t) option remember;
`if`(t=1, 1/n!, add(b(n-j, j, t-1)/j!, j=i..n/t))
end:
a:= n-> n!*b(n, 0, 6):
seq(a(n), n=0..30);
CROSSREFS
Column k=6 of A226873.
Sequence in context: A218919 A346188 A226875 * A325308 A226877 A226878
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jun 21 2013
STATUS
approved