login
A226876
Number of n-length words w over a 6-ary alphabet {a1,a2,...,a6} such that #(w,a1) >= #(w,a2) >= ... >= #(w,a6) >= 0, where #(w,x) counts the letters x in word w.
4
1, 1, 3, 10, 47, 246, 1602, 6441, 35023, 175510, 1017158, 5412111, 33991322, 168112907, 982269641, 5378704155, 31714236863, 174819971462, 1082436507990, 5756932808211, 34302363988462, 193719726696345, 1150224854410151, 6482217725030141, 39812123155826626
OFFSET
0,3
LINKS
MAPLE
b:= proc(n, i, t) option remember;
`if`(t=1, 1/n!, add(b(n-j, j, t-1)/j!, j=i..n/t))
end:
a:= n-> n!*b(n, 0, 6):
seq(a(n), n=0..30);
CROSSREFS
Column k=6 of A226873.
Sequence in context: A218919 A346188 A226875 * A325308 A226877 A226878
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jun 21 2013
STATUS
approved