login
A226879
Number of n-length words w over a 9-ary alphabet {a1,a2,...,a9} such that #(w,a1) >= #(w,a2) >= ... >= #(w,a9) >= 0, where #(w,x) counts the letters x in word w.
4
1, 1, 3, 10, 47, 246, 1602, 11481, 95503, 871030, 5250758, 38454351, 273492122, 2051148347, 15736849481, 125536061475, 1041102777023, 8537848507142, 74739775725270, 569218702884915, 4674633861692302, 37899687815748825, 312237339834676391, 2586068757754063445
OFFSET
0,3
LINKS
MAPLE
b:= proc(n, i, t) option remember;
`if`(t=1, 1/n!, add(b(n-j, j, t-1)/j!, j=i..n/t))
end:
a:= n-> n!*b(n, 0, 9):
seq(a(n), n=0..30);
CROSSREFS
Column k=9 of A226873.
Sequence in context: A325308 A226877 A226878 * A226880 A005651 A346055
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jun 21 2013
STATUS
approved