login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226877
Number of n-length words w over a 7-ary alphabet {a1,a2,...,a7} such that #(w,a1) >= #(w,a2) >= ... >= #(w,a7) >= 0, where #(w,x) counts the letters x in word w.
4
1, 1, 3, 10, 47, 246, 1602, 11481, 55183, 326710, 1924358, 11843151, 76569242, 494393147, 3419744681, 20455085475, 133157018303, 860006815622, 5660947113750, 37583646117555, 249434965500622, 1713067949756985, 11030202759647591, 73747039462964885
OFFSET
0,3
LINKS
MAPLE
b:= proc(n, i, t) option remember;
`if`(t=1, 1/n!, add(b(n-j, j, t-1)/j!, j=i..n/t))
end:
a:= n-> n!*b(n, 0, 7):
seq(a(n), n=0..30);
CROSSREFS
Column k=7 of A226873.
Sequence in context: A226875 A226876 A325308 * A226878 A226879 A226880
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jun 21 2013
STATUS
approved