login
A226877
Number of n-length words w over a 7-ary alphabet {a1,a2,...,a7} such that #(w,a1) >= #(w,a2) >= ... >= #(w,a7) >= 0, where #(w,x) counts the letters x in word w.
4
1, 1, 3, 10, 47, 246, 1602, 11481, 55183, 326710, 1924358, 11843151, 76569242, 494393147, 3419744681, 20455085475, 133157018303, 860006815622, 5660947113750, 37583646117555, 249434965500622, 1713067949756985, 11030202759647591, 73747039462964885
OFFSET
0,3
LINKS
MAPLE
b:= proc(n, i, t) option remember;
`if`(t=1, 1/n!, add(b(n-j, j, t-1)/j!, j=i..n/t))
end:
a:= n-> n!*b(n, 0, 7):
seq(a(n), n=0..30);
CROSSREFS
Column k=7 of A226873.
Sequence in context: A226875 A226876 A325308 * A226878 A226879 A226880
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jun 21 2013
STATUS
approved