login
A226880
Number of n-length words w over a 10-ary alphabet {a1,a2,...,a10} such that #(w,a1) >= #(w,a2) >= ... >= #(w,a10) >= 0, where #(w,x) counts the letters x in word w.
4
1, 1, 3, 10, 47, 246, 1602, 11481, 95503, 871030, 8879558, 58412751, 473076122, 3607903547, 29782240841, 241773783075, 2137404383423, 18482746670342, 173563010955990, 1554987178737075, 15169020662626702, 126731980207937625, 1160565179374262951
OFFSET
0,3
COMMENTS
Differs from A005651 first at n=11: a(11) = 58412751 != A005651(11) = 98329551.
LINKS
MAPLE
b:= proc(n, i, t) option remember;
`if`(t=1, 1/n!, add(b(n-j, j, t-1)/j!, j=i..n/t))
end:
a:= n-> n!*b(n, 0, 10):
seq(a(n), n=0..30);
CROSSREFS
Column k=10 of A226873.
Sequence in context: A226877 A226878 A226879 * A005651 A346055 A249479
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jun 21 2013
STATUS
approved