login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249479
E.g.f.: Sum_{n>=0} x^n / Product_{k=1..n} (k - x^k).
1
1, 1, 3, 10, 47, 246, 1622, 11656, 97869, 899338, 9225674, 102689808, 1252353159, 16392179766, 231501723312, 3489107989204, 56102882993753, 956324067974034, 17265334914237406, 328565326494695912, 6582472704969812115, 138369486361447809150, 3047029944703252620540, 70122393369209990745660
OFFSET
0,3
LINKS
FORMULA
a(n) ~ exp(1) * n!. - Vaclav Kotesovec, Nov 01 2014
EXAMPLE
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 10*x^3/3! + 47*x^4/4! + 246*x^5/5! +...
where
A(x) = 1 + x/(1-x) + x^2/((1-x)*(2-x^2)) + x^3/((1-x)*(2-x^2)*(3-x^3)) + x^4/((1-x)*(2-x^2)*(3-x^3)*(4-x^4)) + x^5/((1-x)*(2-x^2)*(3-x^3)*(4-x^4)*(5-x^5)) +...
PROG
(PARI) {a(n)=local(A=1); A=sum(m=0, n, x^m/prod(k=1, m, k-x^k +x*O(x^n))); n!*polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A226880 A005651 A346055 * A355154 A236410 A339836
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 29 2014
STATUS
approved