login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355154
G.f. A(x) satisfies: 1 = Sum_{n=-oo..+oo} (-x)^((n+1)^2) * ((1+x)^n - A(x))^n.
1
1, 3, 10, 47, 248, 1354, 7832, 46672, 285136, 1775728, 11232028, 71959338, 465981585, 3045116666, 20055877798, 132995908915, 887220714352, 5950074234287, 40092205226021, 271289342487845, 1842724189708458, 12559944025175681, 85877738644538351
OFFSET
1,2
LINKS
FORMULA
G.f. A(x) satisfies:
(1) 1 = Sum_{n=-oo..+oo} (-x)^((n+1)^2) * ((1+x)^n - A(x))^n.
(2) 1 = Sum_{n=-oo..+oo} (-x)^((n-1)^2) * (1+x)^(n^2) / (1 - A(x)*(1+x)^n)^n.
(3) 1/(1+x) = Sum_{n=-oo..+oo} (-1)^n * (x + x^2)^(n^2) * (1+x)^(2*n) / (1 - A(x)*(1+x)^(n+1))^(n+1).
a(n) ~ c * d^n / n^(3/2), where d = 7.312110954492511257173117... and c = 0.1256708322688258093501... - Vaclav Kotesovec, Jun 22 2022
EXAMPLE
G.f.: A(x) = x + 3*x^2 + 10*x^3 + 47*x^4 + 248*x^5 + 1354*x^6 + 7832*x^7 + 46672*x^8 + 285136*x^9 + 1775728*x^10 + 11232028*x^11 + ...
where
1 = ... + x^16/(1/(1+x)^5 - A(x))^5 - x^9/(1/(1+x)^4 - A(x))^4 + x^4/(1/(1+x)^3 - A(x))^3 - x/(1/(1+x)^2 - A(x))^2 + 1/(1/(1+x) - A(x)) - x + x^4*((1+x) - A(x)) - x^9*((1+x)^2 - A(x))^2 + x^16*((1+x)^3 - A(x))^3 -+ ...
PROG
(PARI) {a(n) = my(A=[0, 1], t); for(i=1, n, A=concat(A, 0); t = ceil(sqrt(n+4));
A[#A] = -polcoeff( sum(n=-t, t, (-x)^((n+1)^2) * ((1+x)^n - Ser(A))^n ), #A-1)); A[n+1]}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A005651 A346055 A249479 * A236410 A339836 A105748
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 21 2022
STATUS
approved