login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355151
G.f. A(x) satisfies: (1 - x)/(1 + x) = Sum_{n=-oo..+oo} (-1)^n * A(x)^(n^2).
2
1, -1, 1, 0, -3, 9, -15, 6, 56, -222, 456, -322, -1562, 7604, -18062, 18544, 46676, -293986, 797456, -1066316, -1265854, 11945620, -36984046, 60359006, 20788743, -493365441, 1756737971, -3368998030, 835358767, 20230816709, -84341891481, 185935403556
OFFSET
1,5
COMMENTS
Is there a pattern to the signs of the terms?
Conjectures:
(C.1) a(4*n) == 0 (mod 2) for n >= 0.
(C.2) a(4*n+1) == a(4*n+2) == a(4*n+3) (mod 2) for n >= 0.
(C.3) a(4*n+1) == a(4*n+3) (mod 4) for n >= 0.
LINKS
Eric Weisstein's World of Mathematics, Jacobi Theta Functions
FORMULA
G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies:
(1) (1 - x)/(1 + x) = Sum_{n=-oo..+oo} (-1)^n * A(x)^(n^2).
(2) (1 - x)/(1 + x) = Product_{n>=1} (1 - A(x)^(2*n)) * (1 - A(x)^(2*n-1))^2, by the Jacobi triple product identity.
(3) (1 - x)^2/(1 + x)^2 = 1 + 4*Sum_{n>=1} (-1)^n * A(x)^(2*n-1)/(1 + A(x)^(2*n-1)), by a q-series identity for the Jacobi theta_4 function.
(4) (1 - x)^4/(1 + x)^4 = 1 + 8*Sum_{n>=1} (-1)^n * n * A(x)^n/(1 + A(x)^n), by a q-series identity for the Jacobi theta_4 function.
(5) A( (1 - theta_4(x))/(1 + theta_4(x)) ) = x, where theta_4(x) = 1 + 2*Sum_{n>=1} (-x)^(n^2) is the Jacobi theta_4 function.
SPECIFIC VALUES.
(V.1) A(x) = -exp(-Pi) at x = (1-y)/(1+y) where y = Pi^(1/4)/gamma(3/4).
(V.2) A(x) = -exp(-2*Pi) at x = (1-y)/(1+y) where y = Pi^(1/4)/gamma(3/4) * (6 + 4*sqrt(2))^(1/4)/2.
(V.3) A(x) = -exp(-3*Pi) at x = (1-y)/(1+y) where y = Pi^(1/4)/gamma(3/4) * (27 + 18*sqrt(3))^(1/4)/3.
(V.4) A(x) = -exp(-4*Pi) at x = (1-y)/(1+y) where y = Pi^(1/4)/gamma(3/4) * (8^(1/4) + 2)/4.
(V.5) A(x) = -exp(-sqrt(3)*Pi) at x = (1-y)/(1+y) where y = gamma(4/3)^(3/2)*3^(13/8)/(Pi*2^(2/3)).
EXAMPLE
G.f. A(x) = x - x^2 + x^3 - 3*x^5 + 9*x^6 - 15*x^7 + 6*x^8 + 56*x^9 - 222*x^10 + 456*x^11 - 322*x^12 - 1562*x^13 + 7604*x^14 - 18062*x^15 + ...
such that
(1 - x)/(1 + x) = 1 - 2*A(x) + 2*A(x)^4 - 2*A(x)^9 + 2*A(x)^16 - 2*A(x)^25 + 2*A(x)^36 - 2*A(x)^49 +- ...
By the Jacobi triple product
(1 - x)/(1 + x) = (1 - A(x)^2)*(1 - A(x))^2 * (1 - A(x)^4) * (1 - A(x)^3)^2 * (1 - A(x)^6) * (1 - A(x)^5)^2 * (1 - A(x)^8) * (1 - A(x)^7)^2 * ...
PROG
(PARI) {a(n) = my(A=[0, 1], t); for(i=1, n, A = concat(A, 0); t = ceil(sqrt(#A+4));
A[#A] = polcoeff( -(1-x)/(1+x) + 1 + 2*sum(n=1, t, (-1)^n * Ser(A)^(n^2)), #A-1)/2); H=A; A[n+1]}
for(n=1, 40, print1(a(n), ", "))
CROSSREFS
Cf. A354651.
Sequence in context: A077932 A272458 A270945 * A370837 A366116 A310325
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jun 21 2022
STATUS
approved