login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. A(x) satisfies: (1 - x)/(1 + x) = Sum_{n=-oo..+oo} (-1)^n * A(x)^(n^2).
2

%I #14 Jul 22 2022 17:45:12

%S 1,-1,1,0,-3,9,-15,6,56,-222,456,-322,-1562,7604,-18062,18544,46676,

%T -293986,797456,-1066316,-1265854,11945620,-36984046,60359006,

%U 20788743,-493365441,1756737971,-3368998030,835358767,20230816709,-84341891481,185935403556

%N G.f. A(x) satisfies: (1 - x)/(1 + x) = Sum_{n=-oo..+oo} (-1)^n * A(x)^(n^2).

%C Is there a pattern to the signs of the terms?

%C Conjectures:

%C (C.1) a(4*n) == 0 (mod 2) for n >= 0.

%C (C.2) a(4*n+1) == a(4*n+2) == a(4*n+3) (mod 2) for n >= 0.

%C (C.3) a(4*n+1) == a(4*n+3) (mod 4) for n >= 0.

%H Paul D. Hanna, <a href="/A355151/b355151.txt">Table of n, a(n) for n = 1..625</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/JacobiThetaFunctions.html">Jacobi Theta Functions</a>

%F G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies:

%F (1) (1 - x)/(1 + x) = Sum_{n=-oo..+oo} (-1)^n * A(x)^(n^2).

%F (2) (1 - x)/(1 + x) = Product_{n>=1} (1 - A(x)^(2*n)) * (1 - A(x)^(2*n-1))^2, by the Jacobi triple product identity.

%F (3) (1 - x)^2/(1 + x)^2 = 1 + 4*Sum_{n>=1} (-1)^n * A(x)^(2*n-1)/(1 + A(x)^(2*n-1)), by a q-series identity for the Jacobi theta_4 function.

%F (4) (1 - x)^4/(1 + x)^4 = 1 + 8*Sum_{n>=1} (-1)^n * n * A(x)^n/(1 + A(x)^n), by a q-series identity for the Jacobi theta_4 function.

%F (5) A( (1 - theta_4(x))/(1 + theta_4(x)) ) = x, where theta_4(x) = 1 + 2*Sum_{n>=1} (-x)^(n^2) is the Jacobi theta_4 function.

%F SPECIFIC VALUES.

%F (V.1) A(x) = -exp(-Pi) at x = (1-y)/(1+y) where y = Pi^(1/4)/gamma(3/4).

%F (V.2) A(x) = -exp(-2*Pi) at x = (1-y)/(1+y) where y = Pi^(1/4)/gamma(3/4) * (6 + 4*sqrt(2))^(1/4)/2.

%F (V.3) A(x) = -exp(-3*Pi) at x = (1-y)/(1+y) where y = Pi^(1/4)/gamma(3/4) * (27 + 18*sqrt(3))^(1/4)/3.

%F (V.4) A(x) = -exp(-4*Pi) at x = (1-y)/(1+y) where y = Pi^(1/4)/gamma(3/4) * (8^(1/4) + 2)/4.

%F (V.5) A(x) = -exp(-sqrt(3)*Pi) at x = (1-y)/(1+y) where y = gamma(4/3)^(3/2)*3^(13/8)/(Pi*2^(2/3)).

%e G.f. A(x) = x - x^2 + x^3 - 3*x^5 + 9*x^6 - 15*x^7 + 6*x^8 + 56*x^9 - 222*x^10 + 456*x^11 - 322*x^12 - 1562*x^13 + 7604*x^14 - 18062*x^15 + ...

%e such that

%e (1 - x)/(1 + x) = 1 - 2*A(x) + 2*A(x)^4 - 2*A(x)^9 + 2*A(x)^16 - 2*A(x)^25 + 2*A(x)^36 - 2*A(x)^49 +- ...

%e By the Jacobi triple product

%e (1 - x)/(1 + x) = (1 - A(x)^2)*(1 - A(x))^2 * (1 - A(x)^4) * (1 - A(x)^3)^2 * (1 - A(x)^6) * (1 - A(x)^5)^2 * (1 - A(x)^8) * (1 - A(x)^7)^2 * ...

%o (PARI) {a(n) = my(A=[0,1],t); for(i=1,n, A = concat(A,0); t = ceil(sqrt(#A+4));

%o A[#A] = polcoeff( -(1-x)/(1+x) + 1 + 2*sum(n=1,t, (-1)^n * Ser(A)^(n^2)), #A-1)/2); H=A; A[n+1]}

%o for(n=1,40,print1(a(n),", "))

%Y Cf. A354651.

%K sign

%O 1,5

%A _Paul D. Hanna_, Jun 21 2022