login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355155
G.f. A(x) satisfies: 2 = Sum_{n=-oo..+oo} (-x)^(n*(n+1)/2) * ((1+x)^(n+1) - 2*A(x))^n.
2
1, 1, 7, 28, 184, 1024, 6676, 42367, 282765, 1897203, 13004369, 89991470, 630242521, 4450613382, 31683411117, 227041605009, 1636747514265, 11860982110191, 86356914006201, 631382010617369, 4633749074928932, 34124201919637479, 252086975581304199
OFFSET
1,3
LINKS
FORMULA
G.f. A(x) satisfies:
(1) 2 = Sum_{n=-oo..+oo} (-x)^(n*(n+1)/2) * ((1+x)^(n+1) - 2*A(x))^n.
(2) 2 = Sum_{n=-oo..+oo} (-x)^(n*(n+1)/2) * (1+x)^(n*(n+1)) / (1 - 2*A(x)*(1+x)^n)^(n+1).
a(n) ~ c * d^n / n^(3/2), where d = 7.89889... and c = 0.06269... - Vaclav Kotesovec, Jun 22 2022
EXAMPLE
G.f.: A(x) = x + x^2 + 7*x^3 + 28*x^4 + 184*x^5 + 1024*x^6 + 6676*x^7 + 42367*x^8 + 282765*x^9 + 1897203*x^10 + 13004369*x^11 + ...
where
2 = ... + x^6/(1/(1+x)^3 - 2*A(x))^4 - x^3/(1/(1+x)^2 - 2*A(x))^3 - x/(1/(1+x) - 2*A(x))^2 + 1/(1 - 2*A(x)) + 1 - x*((1+x)^2 - 2*A(x)) - x^3*((1+x)^3 - 2*A(x))^2 + x^6*((1+x)^4 - 2*A(x))^3 +--+ ...
PROG
(PARI) {a(n) = my(A=[0, 1], t); for(i=1, n, A=concat(A, 0); t = ceil(sqrt(2*n+4));
A[#A] = -polcoeff( sum(n=-t, t, (-x)^(n*(n+1)/2) * ((1+x)^(n+1) - 2*Ser(A))^n ), #A-1)/2); A[n+1]}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Cf. A355156.
Sequence in context: A224663 A378554 A203296 * A058822 A054369 A185360
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 21 2022
STATUS
approved