login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A058822 a(0) = 1, a(1) = 7; for n>=2 a(n) is the number of degree-n monic reducible polynomials over GF(7), i.e., a(n) = 7^n - A001693(n). 0
1, 7, 28, 231, 1813, 13447, 98105, 705895, 5044501, 35869911, 254229409, 1797569767, 12687856601, 89436009607, 629778626473, 4431057410423, 31155872769301, 218946366105607, 1537946178052697, 10798953333511399, 75802652996855281, 531948441984119239, 3732101910100912537 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Dimensions of homogeneous subspaces of shuffle algebra over 7-letter alphabet (see A058766 for 2-letter case).
REFERENCES
M. Lothaire, Combinatorics on words, Cambridge mathematical library, 1983, p. 126 (definition of shuffle algebra).
LINKS
MATHEMATICA
a[n_] := 7^n - DivisorSum[n, MoebiusMu[n/#] * 7^# &] / n; a[0] = 1; a[1] = 7; Array[a, 23, 0] (* Amiram Eldar, Aug 13 2023 *)
PROG
(PARI) a(n) = if (n<=1, 7^n, 7^n - sumdiv(n, d, moebius(d)*7^(n/d))/n); \\ Michel Marcus, Oct 30 2017
CROSSREFS
Sequence in context: A224663 A203296 A355155 * A054369 A185360 A198028
KEYWORD
nonn
AUTHOR
Claude Lenormand (claude.lenormand(AT)free.fr), Jan 04 2001
EXTENSIONS
Better description from Sharon Sela (sharonsela(AT)hotmail.com), Feb 19 2002
More terms from Michel Marcus, Oct 30 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 10 23:37 EST 2023. Contains 367717 sequences. (Running on oeis4.)