|
|
A058823
|
|
a(0) = 1, a(1) = 8; for n >= 2 a(n) is the number of degree-n monic reducible polynomials over GF(8), i.e., a(n) = 8^n - A027380(n).
|
|
0
|
|
|
1, 8, 36, 344, 3088, 26216, 218548, 1797560, 14680576, 119304704, 966370924, 7809031448, 62992875856, 507466905128, 4083900481540, 32838747285128, 263882791714816, 2119341001115528, 17013598599759616, 136530178177126616, 1095275429430191920, 8784163844623695896
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Dimensions of homogeneous subspaces of shuffle algebra over 8-letter alphabet (see A058766 for 2-letter case).
|
|
REFERENCES
|
M. Lothaire, Combinatorics on words, Cambridge mathematical library, 1983, p. 126 (definition of shuffle algebra).
|
|
LINKS
|
Table of n, a(n) for n=0..21.
|
|
PROG
|
(PARI) a(n) = if (n<=1, 8^n, 8^n - sumdiv(n, d, moebius(d)*8^(n/d))/n); \\ Michel Marcus, Oct 30 2017
|
|
CROSSREFS
|
Cf. A027380, A058766.
Sequence in context: A126756 A203297 A181072 * A244301 A268157 A203020
Adjacent sequences: A058820 A058821 A058822 * A058824 A058825 A058826
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Claude Lenormand (claude.lenormand(AT)free.fr), Jan 04 2001
|
|
EXTENSIONS
|
Better description from Sharon Sela (sharonsela(AT)hotmail.com), Feb 19 2002
More terms from Michel Marcus, Oct 30 2017
|
|
STATUS
|
approved
|
|
|
|