login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355158
Number of partitions of n that contain more nonprime parts than prime parts.
2
0, 1, 1, 1, 3, 4, 5, 8, 12, 16, 24, 29, 42, 57, 74, 97, 132, 165, 217, 279, 355, 453, 576, 717, 908, 1135, 1408, 1751, 2169, 2664, 3283, 4022, 4909, 5990, 7282, 8814, 10681, 12885, 15506, 18643, 22362, 26739, 31970, 38100, 45340, 53878, 63908, 75639, 89476, 105580, 124445
OFFSET
0,5
FORMULA
a(n) = A000041(n) - A155515(n) - A355225(n).
a(n) = A355306(n) - A355225(n).
EXAMPLE
For n = 8 the partitions of 8 that contain more nonprime parts than prime parts are [8], [4, 4], [4, 3, 1], [6, 1, 1], [4, 2, 1, 1], [5, 1, 1, 1], [3, 2, 1, 1, 1], [4, 1, 1, 1, 1], [2, 2, 1, 1, 1, 1], [3, 1, 1, 1, 1, 1], [2, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1]. There are 12 of these partitions so a(8) = 12.
PROG
(PARI) a(n) = my(nb=0); forpart(p=n, if (#select(x->!isprime(x), Vec(p)) > #p/2, nb++)); nb; \\ Michel Marcus, Jun 25 2022
(Python)
from sympy import isprime
from sympy.utilities.iterables import partitions
def c(p): return 2*sum(p[i] for i in p if not isprime(i)) > sum(p.values())
def a(n): return sum(1 for p in partitions(n) if c(p))
print([a(n) for n in range(51)]) # Michael S. Branicky, Jun 28 2022
KEYWORD
nonn
AUTHOR
Omar E. Pol, Jun 24 2022
EXTENSIONS
More terms from Michel Marcus, Jun 25 2022
STATUS
approved