login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215082
Related to Fibonacci numbers, see the Formula section.
4
0, 1, 1, 3, 4, 5, 8, 12, 17, 23, 35, 43, 66, 81, 124, 148, 229, 266, 414, 476, 742, 842, 1318, 1478, 2320, 2581, 4059, 4481, 7062, 7743, 12224, 13328, 21071, 22857, 36185, 39073, 61930, 66605, 105678, 113242, 179847, 192084, 305326, 325128, 517212, 549252
OFFSET
0,4
LINKS
FORMULA
a(0) = 0, a(1) = 1, a(2) = 1, a(2n) + a(2n+1) = (n+1)*Fibonacci(n+2), a(2n) = a(2n-1) + a(2n-3).
G.f.: x*(2*x^2+1)*(x^3+x+1) / ((x^2-x+1)*(x^2+x+1)*(x^4+x^2-1)^2). - Alois P. Heinz, Aug 02 2012
EXAMPLE
a(2) + a(3) = 2*2 = 4 -> a(3) = 3.
a(4) = a(3) + a(1) = 3 + 1 = 4.
a(4) + a(5) = 3*3 = 9 -> a(5) = 5.
a(6) = a(5) + a(3) = 5 + 3 = 8 , etc.
MAPLE
a:= n-> (Matrix(6, (i, j)-> `if`(i=j-1, 1, `if`(i=6, [-1, -3, -2, 1, 2, 1][j], 0)))^iquo(n, 2, 'r'). `if`(r=0, <<0, 1, 4, 8, 17, 35>>, <<1, 3, 5, 12, 23, 43>>))[1, 1]: seq (a(n), n=0..50); # Alois P. Heinz, Aug 02 2012
CROSSREFS
Sequence in context: A369575 A355158 A034403 * A320690 A179070 A358356
KEYWORD
nonn,easy
AUTHOR
Philippe Deléham, Aug 02 2012
STATUS
approved