OFFSET
0,4
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
FORMULA
a(0) = 0, a(1) = 1, a(2) = 1, a(2n) + a(2n+1) = (n+1)*Fibonacci(n+2), a(2n) = a(2n-1) + a(2n-3).
G.f.: x*(2*x^2+1)*(x^3+x+1) / ((x^2-x+1)*(x^2+x+1)*(x^4+x^2-1)^2). - Alois P. Heinz, Aug 02 2012
EXAMPLE
a(2) + a(3) = 2*2 = 4 -> a(3) = 3.
a(4) = a(3) + a(1) = 3 + 1 = 4.
a(4) + a(5) = 3*3 = 9 -> a(5) = 5.
a(6) = a(5) + a(3) = 5 + 3 = 8 , etc.
MAPLE
a:= n-> (Matrix(6, (i, j)-> `if`(i=j-1, 1, `if`(i=6, [-1, -3, -2, 1, 2, 1][j], 0)))^iquo(n, 2, 'r'). `if`(r=0, <<0, 1, 4, 8, 17, 35>>, <<1, 3, 5, 12, 23, 43>>))[1, 1]: seq (a(n), n=0..50); # Alois P. Heinz, Aug 02 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Philippe Deléham, Aug 02 2012
STATUS
approved