login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215084
a(n) = sum of the sums of the k first n-th powers.
4
0, 1, 6, 46, 470, 6035, 93436, 1695036, 35277012, 828707925, 21693441550, 626254969978, 19766667410282, 677231901484775, 25031756512858200, 992872579254244088, 42066929594261568840, 1896157095455962952169, 90601933352843530354170, 4574495282686422755339734, 243359175218492577008763726
OFFSET
0,3
COMMENTS
First term a(0) may be computed as 1 by starting the inner sum at j=0 and taking the convention 0^0 = 1.
LINKS
FORMULA
a(n) = Sum_{k=1..n} Sum_{j=1..k} j^n.
a(n) = Sum_{k=1..n} H_k^{-n} where H_k^{-n} is the k-th harmonic number of order -n.
a(n) = Sum_{k=1..n} (B(n+1, k+1) - B(n+1, 1))/(n+1), where B(n, x) are the Bernoulli polynomials. - Daniel Suteu, Jun 25 2018
G.f.: Sum_{k>=1} k^k*x^k/(1 - k*x)^2. - Ilya Gutkovskiy, Oct 11 2018
a(n) ~ c * n^n, where c = 1/(1 - 2*exp(-1) + exp(-2)) = 2.50265030107711874333... - Vaclav Kotesovec, Nov 06 2021
EXAMPLE
a(3) = (1^3) + (1^3 + 2^3) + (1^3 + 2^3 + 3^3) = (1^3 + 1^3 + 1^3) + (2^3 + 2^3) + (3^3) = 3 * 1^3 + 2 * 2^3 + 1 * 3^3 = 46. - David A. Corneth, Jun 27 2018
MATHEMATICA
Table[Sum[Sum[j^n, {j, 1, k}], {k, 0, n}], {n, 0, 20}]
a[n_] := (n+1)*HarmonicNumber[-1, -n] - HarmonicNumber[n, -n-1] + (n+1)*HarmonicNumber[n, -n]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Mar 05 2013 *)
Table[Total[Accumulate[Range[n]^n]], {n, 0, 20}] (* Harvey P. Dale, Mar 29 2020 *)
PROG
(PARI) a(n) = sum(k=1, n, sum(j=1, k, j^n)); \\ Michel Marcus, Jun 25 2018
(PARI) a(n) = sum(i=1, n, (n+1-i) * i^n); \\ David A. Corneth, Jun 27 2018
CROSSREFS
Row sums of A215083.
Sequence in context: A001829 A006386 A326324 * A232058 A331704 A275031
KEYWORD
nonn
AUTHOR
Olivier Gérard, Aug 02 2012
STATUS
approved