login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326324
a(n) = A_{5}(n) where A_{m}(x) are the Eulerian polynomials as defined in A326323.
9
1, 1, 6, 46, 456, 5656, 84336, 1467376, 29175936, 652606336, 16219458816, 443419545856, 13224580002816, 427278468668416, 14867050125981696, 554245056343668736, 22039796215883268096, 931198483176870608896, 41658202699736550014976, 1967160945260218035798016
OFFSET
0,3
COMMENTS
See A326323 for the more general formulas.
FORMULA
a(n) ~ n!/5 * (4/log(5))^(n+1). - Vaclav Kotesovec, Aug 09 2021
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * 4^(k-1) * a(n-k). - Ilya Gutkovskiy, Feb 04 2022
MAPLE
seq(add(combinat:-eulerian1(n, k)*5^k, k=0..n), n=0..20);
# Alternative:
egf := 4/(5 - exp(4*x)): ser := series(egf, x, 21):
seq(k!*coeff(ser, x, k), k=0..20);
MATHEMATICA
a[1] := 1; a[n_] := 4^(n + 1)/5 HurwitzLerchPhi[1/5, -n, 0];
Table[a[n], {n, 0, 20}]
(* Alternative: *)
s[n_] := Sum[StirlingS2[n, j] 4^(n - j) j!, {j, 0, n}];
Table[s[n], {n, 0, 20}]
KEYWORD
nonn
AUTHOR
Peter Luschny, Jun 27 2019
EXTENSIONS
Corrected after notice from Jean-François Alcover by Peter Luschny, Jul 13 2019
STATUS
approved