The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A326326 T(n, k) = [x^k] Sum_{j=0..n} Pochhammer(x, j), for 0 <= k <= n, triangle read by rows. 1
 1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 10, 15, 7, 1, 1, 34, 65, 42, 11, 1, 1, 154, 339, 267, 96, 16, 1, 1, 874, 2103, 1891, 831, 191, 22, 1, 1, 5914, 15171, 15023, 7600, 2151, 344, 29, 1, 1, 46234, 124755, 133147, 74884, 24600, 4880, 575, 37, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 LINKS FORMULA Sum_{k=0..n) T(n, k)*x^k = Sum_{k=0..n) (x)^k, where (x)^k denotes the rising factorial. EXAMPLE Triangle starts: [0] [1] [1] [1, 1] [2] [1, 2,     1] [3] [1, 4,     4,      1] [4] [1, 10,    15,     7,      1] [5] [1, 34,    65,     42,     11,    1] [6] [1, 154,   339,    267,    96,    16,    1] [7] [1, 874,   2103,   1891,   831,   191,   22,   1] [8] [1, 5914,  15171,  15023,  7600,  2151,  344,  29,  1] [9] [1, 46234, 124755, 133147, 74884, 24600, 4880, 575, 37, 1] MAPLE with(PolynomialTools): T_row := n -> CoefficientList(expand(add(pochhammer(x, j), j=0..n)), x): ListTools:-Flatten([seq(T_row(n), n=0..9)]); MATHEMATICA Table[CoefficientList[FunctionExpand[Sum[Pochhammer[x, k], {k, 0, n}]], x], {n, 0, 10}] // Flatten CROSSREFS Same construction for the falling factorial is A176663. The inverse of the lower triangular matrix is the signed form of A256894. Second column is A003422(n) and row sums are A003422(n+1). Alternating row sums are A000007. Third column is A097422. Cf. A265609. Sequence in context: A155971 A176480 A154218 * A307139 A078121 A333157 Adjacent sequences:  A326323 A326324 A326325 * A326327 A326328 A326329 KEYWORD nonn,tabl AUTHOR Peter Luschny, Jul 02 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 5 18:48 EDT 2021. Contains 346488 sequences. (Running on oeis4.)