OFFSET
0,5
FORMULA
Sum_{k=0..n) T(n, k)*x^k = Sum_{k=0..n) (x)^k, where (x)^k denotes the rising factorial.
Conjecture: T(n,k) = Sum_{i=0..n} A132393(i,k) for 0 <= k <= n. - Werner Schulte, Mar 30 2022
EXAMPLE
Triangle starts:
[0] [1]
[1] [1, 1]
[2] [1, 2, 1]
[3] [1, 4, 4, 1]
[4] [1, 10, 15, 7, 1]
[5] [1, 34, 65, 42, 11, 1]
[6] [1, 154, 339, 267, 96, 16, 1]
[7] [1, 874, 2103, 1891, 831, 191, 22, 1]
[8] [1, 5914, 15171, 15023, 7600, 2151, 344, 29, 1]
[9] [1, 46234, 124755, 133147, 74884, 24600, 4880, 575, 37, 1]
MAPLE
with(PolynomialTools):
T_row := n -> CoefficientList(expand(add(pochhammer(x, j), j=0..n)), x):
ListTools:-Flatten([seq(T_row(n), n=0..9)]);
MATHEMATICA
Table[CoefficientList[FunctionExpand[Sum[Pochhammer[x, k], {k, 0, n}]], x], {n, 0, 10}] // Flatten
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Jul 02 2019
STATUS
approved