login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A373744
Triangle read by rows: the almost-Riordan array ( 1/(1-x) | 2/((1-x)*(1+sqrt(1-4*x))), (1-2*x-sqrt(1-4*x))/(2*x) ).
0
1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 9, 13, 6, 1, 1, 23, 41, 26, 8, 1, 1, 65, 131, 101, 43, 10, 1, 1, 197, 428, 376, 197, 64, 12, 1, 1, 626, 1429, 1377, 834, 337, 89, 14, 1, 1, 2056, 4861, 5017, 3382, 1597, 529, 118, 16, 1, 1, 6918, 16795, 18277, 13378, 7105, 2773, 781, 151, 18, 1
OFFSET
0,5
LINKS
Tian-Xiao He and Roksana Słowik, Total Positivity of Almost-Riordan Arrays, arXiv:2406.03774 [math.CO], 2024. See pp. 16-17.
FORMULA
T(n,1) = A014137(n-1).
T(n,n-2) = A091823(n-1) for n > 2.
EXAMPLE
The triangle begins as:
1;
1, 1;
1, 2, 1;
1, 4, 4, 1;
1, 9, 13, 6, 1;
1, 23, 41, 26, 8, 1;
1, 65, 131, 101, 43, 10, 1;
1, 197, 428, 376, 197, 64, 12, 1;
...
MATHEMATICA
T[n_, 0]:=1; T[n_, k_]:=SeriesCoefficient[2/((1-x)(1+Sqrt[1-4x]))((1-2x-Sqrt[1-4x])/(2x))^(k-1), {x, 0, n-1}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten
CROSSREFS
Cf. A000012 (k=0 and n=k), A001453 (k=2), A004275 (subdiagonal), A014137, A091823, A143955 (k=3).
Sequence in context: A155971 A176480 A154218 * A326326 A307139 A078121
KEYWORD
nonn,tabl
AUTHOR
Stefano Spezia, Jun 16 2024
STATUS
approved