login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A373743
Expansion of e.g.f. exp(x^3/6 * (1 + x)^2).
0
1, 0, 0, 1, 8, 20, 10, 280, 3360, 20440, 67200, 462000, 7407400, 73673600, 482081600, 3364761400, 47311264000, 657536880000, 6586994814400, 58707179731200, 740032028736000, 11832726841936000, 161121297104768000, 1857897194273120000, 23875495204536976000
OFFSET
0,5
FORMULA
a(n) = n! * Sum_{k=0..floor(n/3)} binomial(2*k,n-3*k)/(6^k * k!).
a(n) = (n-1)*(n-2)/6 * (3*a(n-3) + 8*(n-3)*a(n-4) + 5*(n-3)*(n-4)*a(n-5)).
PROG
(PARI) a(n) = n!*sum(k=0, n\3, binomial(2*k, n-3*k)/(6^k*k!));
CROSSREFS
Cf. A264622.
Sequence in context: A120081 A173206 A288423 * A081963 A208085 A334065
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 16 2024
STATUS
approved