login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A373741
Expansion of e.g.f. exp(x^2/2 * (1 + x)^3).
1
1, 0, 1, 9, 39, 150, 1365, 13545, 105945, 918540, 10603845, 127806525, 1468823895, 18253765530, 257397445305, 3770163121725, 55637459903025, 866703333295800, 14468243658093225, 250223925107581425, 4426399346291497575, 81488489549760042750
OFFSET
0,4
FORMULA
a(n) = n! * Sum_{k=0..floor(n/2)} binomial(3*k,n-2*k)/(2^k * k!).
a(n) = (n-1)/2 * (2*a(n-2) + 9*(n-2)*a(n-3) + 12*(n-2)*(n-3)*a(n-4) + 5*(n-2)*(n-3)*(n-4)*a(n-5)).
PROG
(PARI) a(n) = n!*sum(k=0, n\2, binomial(3*k, n-2*k)/(2^k*k!));
CROSSREFS
Cf. A116090.
Sequence in context: A212143 A294845 A124851 * A317019 A124041 A264085
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 16 2024
STATUS
approved