login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361568
Expansion of e.g.f. exp(x^3/6 * (1+x)^3).
4
1, 0, 0, 1, 12, 60, 130, 420, 8400, 101080, 781200, 4435200, 37714600, 607807200, 8660652000, 94007313400, 914497584000, 11566931376000, 198256136478400, 3275456501116800, 46558791351072000, 636647461257808000, 10238792220969312000, 194852563745775936000
OFFSET
0,5
FORMULA
a(n) = n! * Sum_{k=0..floor(n/3)} binomial(3*k,n-3*k)/(6^k * k!).
a(0) = 1; a(n) = ((n-1)!/6) * Sum_{k=3..n} k * binomial(3,k-3) * a(n-k)/(n-k)!.
a(n) = (n-1)*(n-2)/6 * (3*a(n-3) + 12*(n-3)*a(n-4) + 15*(n-3)*(n-4)*a(n-5) + 6*(n-3)*(n-4)*(n-5)*a(n-6)). -Seiichi Manyama, Jun 16 2024
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x^3/6*(1+x)^3)))
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!/6*sum(j=3, i, j*binomial(3, j-3)*v[i-j+1]/(i-j)!)); v;
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 16 2023
STATUS
approved