Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Jun 16 2024 11:02:15
%S 1,0,0,1,12,60,130,420,8400,101080,781200,4435200,37714600,607807200,
%T 8660652000,94007313400,914497584000,11566931376000,198256136478400,
%U 3275456501116800,46558791351072000,636647461257808000,10238792220969312000,194852563745775936000
%N Expansion of e.g.f. exp(x^3/6 * (1+x)^3).
%F a(n) = n! * Sum_{k=0..floor(n/3)} binomial(3*k,n-3*k)/(6^k * k!).
%F a(0) = 1; a(n) = ((n-1)!/6) * Sum_{k=3..n} k * binomial(3,k-3) * a(n-k)/(n-k)!.
%F a(n) = (n-1)*(n-2)/6 * (3*a(n-3) + 12*(n-3)*a(n-4) + 15*(n-3)*(n-4)*a(n-5) + 6*(n-3)*(n-4)*(n-5)*a(n-6)). -_Seiichi Manyama_, Jun 16 2024
%o (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x^3/6*(1+x)^3)))
%o (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!/6*sum(j=3, i, j*binomial(3, j-3)*v[i-j+1]/(i-j)!)); v;
%Y Cf. A047974, A361567, A361569.
%Y Cf. A115055, A361279.
%K nonn
%O 0,5
%A _Seiichi Manyama_, Mar 16 2023