login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A115055
Lower level digraph derived from a voltage graph.
9
0, 1, 0, 0, 1, 3, 3, 2, 6, 15, 21, 24, 42, 86, 138, 192, 305, 546, 906, 1381, 2175, 3651, 6042, 9582, 15225, 24901, 40836, 65748, 105364, 170796, 278184, 450017, 724968, 1172412, 1902321, 3080367, 4975551, 8044478, 13029534, 21096027, 34114553
OFFSET
1,6
COMMENTS
Lower level digraph derived from a voltage graph (Gross's covering graph construction) that is a generalized Fibonacci Markov. In matrix terms gives a 6 X 6 Markov with characteristic Polynomial (-1 - x + x^2)*(1 + 2*x + 2*x^2 + x^3 + x^4).
This digraph construction gives a complex substructure to the Fibonacci Pisot that is not Pisot. Gross's covering graph constructions called voltage graphs are abstractions from lower level graphs.
limit_{n to Infinity} (a(n+1)/a(n)) = Golden Mean.
REFERENCES
J. L. Gross and T. W. Tucker, Topological Graph Theory, Wiley, 1987; see Figure 2.5 p. 62
FORMULA
Let M be the 6x6 matrix given by: M = {{0, 0, 0, 0, 1, 1}, {1, 0, 0, 0, 0, 0}, {1, 1, 0, 0, 0, 0}, {0, 0, 1, 0, 0, 0}, {0, 0, 1, 1, 0, 0}, {0, 0, 0, 0, 1, 0}}, then v(n) = M.v(n-1), where a(n) = v(n)(1).
From Vladimir Kruchinin, Oct 12 2011: (Start)
G.f.: x/(1-(x+x^2)^3).
a(n) = Sum_{k=0..n} binomial(3*k,n-3*k). (End)
a(n) = a(n-3) + 3*a(n-4) + 3*a(n-5) + a(n-6). - G. C. Greubel, Mar 22 2019
MATHEMATICA
(* Gross page 62 voltage group L3 : weights set to one *)
M = {{0, 0, 0, 0, 1, 1}, {1, 0, 0, 0, 0, 0}, {1, 1, 0, 0, 0, 0}, {0, 0, 1, 0, 0, 0}, {0, 0, 1, 1, 0, 0}, {0, 0, 0, 0, 1, 0}} v[1] = {0, 0, 0, 0, 0, 1} v[n_] := v[n] = M.v[n - 1] a = Table[Floor[v[n][[1]]], {n, 1, 50}]
(* alternate program *)
LinearRecurrence[{0, 0, 1, 3, 3, 1}, {0, 1, 0, 0, 1, 3}, 50] (* G. C. Greubel, Mar 22 2019 *)
PROG
(PARI) my(x='x+O('x^50)); concat([0], Vec(x/(1-(x+x^2)^3))) \\ G. C. Greubel, Mar 22 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 50); [0] cat Coefficients(R!( x/(1-(x+x^2)^3) )); // G. C. Greubel, Mar 22 2019
(Sage) (x/(1-(x+x^2)^3)).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Mar 22 2019
(GAP) a:=[0, 1, 0, 0, 1, 3];; for n in [7..50] do a[n]:=a[n-3]+3*a[n-4]+ 3*a[n-5]+a[n-6]; od; a; # G. C. Greubel, Mar 22 2019
CROSSREFS
Sequence in context: A200174 A266153 A086636 * A158468 A238278 A200770
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Dec 09 2006
EXTENSIONS
Edited by G. C. Greubel, Mar 22 2019
STATUS
approved