The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A158468 Decimal expansion of hz = limit_{k -> infinity} 1 + k - Sum_{j = -k..k} exp(-2^j). 5
1, 3, 3, 2, 7, 4, 7, 3, 8, 2, 4, 3, 2, 8, 9, 9, 2, 2, 5, 0, 0, 8, 6, 0, 1, 0, 9, 8, 3, 7, 3, 8, 9, 9, 7, 0, 4, 4, 1, 6, 7, 4, 3, 9, 8, 2, 2, 5, 9, 8, 4, 4, 5, 3, 6, 5, 7, 9, 7, 1, 8, 4, 9, 3, 9, 9, 3, 3, 4, 1, 6, 8, 8, 2, 7, 3, 5, 4, 7, 4, 5, 4, 0, 7, 0, 2, 8, 0, 6, 5, 1, 7, 1, 6, 6, 6, 0, 4, 7, 8, 7, 0, 4, 0, 6, 6, 8, 5 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Curiously, this constant is close to gamma/log(2)+1/2 = 1.332746177... - Jean-François Alcover, Mar 24 2014
LINKS
FORMULA
Equals gamma/log(2)+1/2 + Sum_{k>=1} Im(Gamma(1-2*k*Pi*i/log(2)))/(k*Pi). - Toshitaka Suzuki, Feb 10 2017
Also equals limit_{k->oo} 1 + Sum_{j>=1} 1-(1-1/2^j)^(2^k). - Toshitaka Suzuki, Feb 12 2017
EXAMPLE
1.3327473824328992250086010983738997044167439822598445365797...
MAPLE
hz:= limit(1+k -sum(exp(-2^j), j=-k..k), k=infinity):
hzs:= convert(evalf(hz/10, 130), string):
seq(parse(hzs[n+1]), n=1..120);
MATHEMATICA
digits = 105; Clear[f]; f[k_] := f[k] = 1 + k - Sum[Exp[-2^j], {j, -k, k}] // RealDigits[#, 10, digits+1]& // First // Quiet; f[1]; f[n=2]; While[f[n] != f[n-1], n++] ; f[n] // Most (* Jean-François Alcover, Feb 19 2013 *)
CROSSREFS
Cf. A100668 (gamma/log(2)), A158469 (continued fraction), A159835 (Engel expansion), A339168.
Sequence in context: A266153 A086636 A115055 * A238278 A200770 A265965
KEYWORD
nonn,cons
AUTHOR
Alois P. Heinz, Mar 19 2009
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 24 22:09 EDT 2024. Contains 372782 sequences. (Running on oeis4.)