The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A158468 Decimal expansion of hz = limit_{k -> infinity} 1 + k - Sum_{j = -k..k} exp(-2^j). 5
 1, 3, 3, 2, 7, 4, 7, 3, 8, 2, 4, 3, 2, 8, 9, 9, 2, 2, 5, 0, 0, 8, 6, 0, 1, 0, 9, 8, 3, 7, 3, 8, 9, 9, 7, 0, 4, 4, 1, 6, 7, 4, 3, 9, 8, 2, 2, 5, 9, 8, 4, 4, 5, 3, 6, 5, 7, 9, 7, 1, 8, 4, 9, 3, 9, 9, 3, 3, 4, 1, 6, 8, 8, 2, 7, 3, 5, 4, 7, 4, 5, 4, 0, 7, 0, 2, 8, 0, 6, 5, 1, 7, 1, 6, 6, 6, 0, 4, 7, 8, 7, 0, 4, 0, 6, 6, 8, 5 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Curiously, this constant is close to gamma/log(2)+1/2 = 1.332746177... - Jean-François Alcover, Mar 24 2014 LINKS Alois P. Heinz, Table of n, a(n) for n = 1..1000 FORMULA Equals gamma/log(2)+1/2 + Sum_{k>=1} Im(Gamma(1-2*k*Pi*i/log(2)))/(k*Pi). - Toshitaka Suzuki, Feb 10 2017 Also equals limit_{k->oo} 1 + Sum_{j>=1} 1-(1-1/2^j)^(2^k). - Toshitaka Suzuki, Feb 12 2017 EXAMPLE 1.3327473824328992250086010983738997044167439822598445365797... MAPLE hz:= limit(1+k -sum(exp(-2^j), j=-k..k), k=infinity): hzs:= convert(evalf(hz/10, 130), string): seq(parse(hzs[n+1]), n=1..120); MATHEMATICA digits = 105; Clear[f]; f[k_] := f[k] = 1 + k - Sum[Exp[-2^j], {j, -k, k}] // RealDigits[#, 10, digits+1]& // First // Quiet; f[1]; f[n=2]; While[f[n] != f[n-1], n++] ; f[n] // Most (* Jean-François Alcover, Feb 19 2013 *) CROSSREFS Cf. A100668 (gamma/log(2)), A158469 (continued fraction), A159835 (Engel expansion), A339168. Sequence in context: A266153 A086636 A115055 * A238278 A200770 A265965 Adjacent sequences: A158465 A158466 A158467 * A158469 A158470 A158471 KEYWORD nonn,cons AUTHOR Alois P. Heinz, Mar 19 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 24 22:09 EDT 2024. Contains 372782 sequences. (Running on oeis4.)