login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A158468 Decimal expansion of hz = limit_{k -> infinity} 1 + k - Sum_{j = -k..k} exp(-2^j). 5
1, 3, 3, 2, 7, 4, 7, 3, 8, 2, 4, 3, 2, 8, 9, 9, 2, 2, 5, 0, 0, 8, 6, 0, 1, 0, 9, 8, 3, 7, 3, 8, 9, 9, 7, 0, 4, 4, 1, 6, 7, 4, 3, 9, 8, 2, 2, 5, 9, 8, 4, 4, 5, 3, 6, 5, 7, 9, 7, 1, 8, 4, 9, 3, 9, 9, 3, 3, 4, 1, 6, 8, 8, 2, 7, 3, 5, 4, 7, 4, 5, 4, 0, 7, 0, 2, 8, 0, 6, 5, 1, 7, 1, 6, 6, 6, 0, 4, 7, 8, 7, 0, 4, 0, 6, 6, 8, 5 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Curiously, this constant is close to gamma/log(2)+1/2 = 1.332746177... - Jean-François Alcover, Mar 24 2014

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..1000

FORMULA

Equals gamma/log(2)+1/2 + Sum_{k>=1} Im(Gamma(1-2*k*Pi*i/log(2)))/(k*Pi). - Toshitaka Suzuki, Feb 10 2017

Also equals limit_{k->oo} 1 + Sum_{j>=1} 1-(1-1/2^j)^(2^k). - Toshitaka Suzuki, Feb 12 2017

EXAMPLE

1.3327473824328992250086010983738997044167439822598445365797...

MAPLE

hz:= limit(1+k -sum(exp(-2^j), j=-k..k), k=infinity):

hzs:= convert(evalf(hz/10, 130), string):

seq(parse(hzs[n+1]), n=1..120);

MATHEMATICA

digits = 105; Clear[f]; f[k_] := f[k] = 1 + k - Sum[Exp[-2^j], {j, -k, k}] // RealDigits[#, 10, digits+1]& // First // Quiet; f[1]; f[n=2]; While[f[n] != f[n-1], n++] ; f[n] // Most (* Jean-François Alcover, Feb 19 2013 *)

CROSSREFS

Cf. A100668 (gamma/log(2)), A158469 (continued fraction), A159835 (Engel expansion), A339168.

Sequence in context: A266153 A086636 A115055 * A238278 A200770 A265965

Adjacent sequences:  A158465 A158466 A158467 * A158469 A158470 A158471

KEYWORD

nonn,cons

AUTHOR

Alois P. Heinz, Mar 19 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 18 06:47 EST 2022. Contains 350452 sequences. (Running on oeis4.)