login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A115058
Primes p such that 3p+2 is not prime.
4
2, 11, 31, 41, 47, 53, 61, 67, 71, 73, 101, 107, 109, 113, 131, 137, 151, 157, 179, 181, 191, 193, 211, 223, 229, 241, 251, 263, 271, 277, 281, 283, 307, 311, 331, 347, 359, 373, 379, 389, 401, 421, 431, 443, 449, 461, 463, 467, 487, 491, 509, 521, 541, 547
OFFSET
1,1
COMMENTS
Complement of A023208 in the prime numbers A000040.
Primes p that are also the largest prime factor of p(p^2-1)(3p+2)/24.
REFERENCES
Number Theory, George E. Andrews 1971, Dover Publications New York, p 4.
LINKS
EXAMPLE
p=11, p(p^2-1)(3p+2)/24 = 1925 = 5*5*7*11.
MATHEMATICA
a={}; Do[p=Prime[n]; If[ !PrimeQ[3*p+2], AppendTo[a, p]], {n, 8^2}]; a - Vladimir Joseph Stephan Orlovsky, Apr 29 2008
Select[Prime[Range[100]], ! PrimeQ[3 # + 2]&] (* Vincenzo Librandi, Apr 17 2013 *)
PROG
(Magma) [p: p in PrimesUpTo(600) | not IsPrime(3*p + 2)]; // Vincenzo Librandi, Apr 17 2013
CROSSREFS
Sequence in context: A094005 A190154 A187830 * A158295 A213898 A085041
KEYWORD
easy,nonn
AUTHOR
Cino Hilliard, Feb 28 2006
EXTENSIONS
Edited by Max Alekseyev, Feb 06 2010
STATUS
approved