|
|
A023208
|
|
Primes p such that 3*p + 2 is also prime.
|
|
40
|
|
|
3, 5, 7, 13, 17, 19, 23, 29, 37, 43, 59, 79, 83, 89, 97, 103, 127, 139, 149, 163, 167, 173, 197, 199, 227, 233, 239, 257, 269, 293, 313, 317, 337, 349, 353, 367, 383, 397, 409, 419, 433, 439, 457, 479, 499, 503, 523, 569, 577, 607, 643, 659, 709, 757, 769, 797, 859, 863
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Also, son primes of order 1. For smallest son primes of order n see A136027 (also definition). For son primes of order 2 see A136082. - Artur Jasinski, Dec 12 2007
|
|
LINKS
|
|
|
MATHEMATICA
|
n = 1; a = {}; Do[If[PrimeQ[(Prime[k] - 2n)/(2n + 1)], AppendTo[a, (Prime[k] - 2n)/(2n + 1)]], {k, 1, 1000}]; a (* Artur Jasinski, Dec 12 2007 *)
|
|
PROG
|
(Magma) [n: n in PrimesUpTo(900) | IsPrime(3*n+2)]; // Vincenzo Librandi, Nov 20 2010
(Haskell)
a023208 n = a023208_list !! (n-1)
a023208_list = filter ((== 1) . a010051 . (+ 2) . (* 3)) a000040_list
|
|
CROSSREFS
|
Cf. A023208, A094524, A136019, A136020, A136026, A136027, A136082, A136083, A136084, A136085, A136086, A136087, A136088, A136089, A136090, A136091.
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|