login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136085
Son primes of order 8.
15
3, 5, 29, 59, 71, 83, 101, 131, 149, 173, 239, 251, 281, 311, 401, 443, 449, 461, 491, 509, 563, 569, 653, 701, 719, 743, 761, 929, 953, 1109, 1151, 1193, 1223, 1259, 1289, 1301, 1373, 1451, 1511, 1553, 1571, 1583, 1613, 1619, 1811, 1913, 1931, 1949, 2039
OFFSET
1,1
COMMENTS
For smallest son primes of order n see A136027 (also definition). For son primes of order 1 see A023208. For son primes of order 2 see A023218. For son primes of order 3 see A023225. For son primes of order 4 see A023235. For son primes of order 5 see A136082. For son primes of order 6 see A136083. For son primes of order 7 see A136084.
LINKS
MATHEMATICA
n = 8; a = {}; Do[If[PrimeQ[(Prime[k] - 2n)/(2n + 1)], AppendTo[a, (Prime[k] - 2n)/(2n + 1)]], {k, 1, 1000}]; a
q=16; lst={}; Do[p=Prime[n]; If[PrimeQ[(q+1)*p+q], AppendTo[lst, p]], {n, 6!}]; lst (* Vladimir Joseph Stephan Orlovsky, Mar 10 2009 *)
KEYWORD
nonn
AUTHOR
Artur Jasinski, Dec 12 2007
STATUS
approved