The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A213898 Fixed points of a sequence h(n) defined by the minimum number of 9's in the relation n*[n,9,9,...,9,n] = [x,...,x] between simple continued fractions. 4
 2, 11, 31, 43, 47, 67, 79, 103, 127, 199, 211, 223, 263, 307, 311, 383, 431, 439, 463, 467, 499, 523, 563, 571, 587, 691, 719, 751, 811, 839, 863, 883, 911, 967, 991, 1051, 1063, 1087, 1091, 1123, 1151, 1231, 1307, 1327, 1399, 1447, 1451, 1459, 1483, 1499 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS In a variant of A213891, multiply n by a number with simple continued fraction [n,9,9,..,9,n] and increase the number of 9's until the continued fraction of the product has the same first and last entry (called x in the NAME). Examples are 2 * [2, 9, 9, 2] = [4, 4, 1, 1, 4, 4], 3 * [3, 9, 3] = [9, 3, 9], 4 * [4, 9, 9, 9, 9, 9, 4] = [16, 2, 3, 1, 1, 1, 1, 8, 1, 1, 1, 1, 3, 2, 16] , 5 * [5, 9, 9, 9, 9, 5] = [25, 1, 1, 4, 1, 1, 1, 1, 1, 1, 4, 1, 1, 25], 6 * [6, 9, 9, 9, 9, 9, 6] = [36, 1, 1, 1, 13, 6, 13, 1, 1, 1, 36], 7 * [7, 9, 9, 9, 9, 9, 7] = [49, 1, 3, 3, 6, 1, 6, 3, 3, 1, 49]. The number of 9's needed defines the sequence h(n) = 2, 1,5, 4, 5, 5, 5, 1, 14,...  (n>=2). The current sequence contains the fixed points of h, i. e., those n where h(n)=n. We conjecture that this sequence contains prime numbers analogous to the sequence of prime numbers A000057, in the sense that, instead of referring to the fibonacci sequence (sequences satisfying f(n)=f(n-1)+f(n-2) with arbitrary positive integer values for f(1) and f(2)) it refers to the sequences satisfying f(n)=9*f(n-1)+f(n-2) like A099371, A015455 etc. This would mean that a prime is in the sequence A213898 if and only if it divides some term in each of the sequences satisfying f(n)=9*f(n-1)+f(n-2). LINKS MATHEMATICA f[m_, n_] := Block[{c, k = 1}, c[x_, y_] := ContinuedFraction[x FromContinuedFraction[Join[{x}, Table[m, {y}], {x}]]]; While[First@ c[n, k] != Last@ c[n, k], k++]; k]; Select[Range[2, 1000], f[9, #] == # &] (* Michael De Vlieger, Sep 16 2015 *) PROG (PARI) {a(n) = local(t, m=1); if( n<2, 0, while( 1,    t = contfracpnqn( concat([n, vector(m, i, 9), n]));    t = contfrac(n*t[1, 1]/t[2, 1]);    if(t[1]

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 12 07:28 EDT 2021. Contains 343821 sequences. (Running on oeis4.)