

A261311


Fixed points of sequence A262211 which yields the minimum number of 12's such that [n; 12, ..., 12, n] = [x; ..., x] for some x; [...] being continued fractions.


19



19, 23, 31, 43, 59, 79, 103, 163, 179, 199, 227, 239, 251, 283, 331, 347, 383, 431, 439, 463, 467, 479, 487, 499, 523, 547, 587, 607, 631, 647, 683, 727, 827, 883, 907, 911, 919, 967, 991, 1019, 1031, 1051, 1087, 1123, 1171, 1303, 1327, 1423, 1499, 1511, 1523, 1531, 1567, 1571, 1667
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Surprisingly, the variant A213900 with 11 instead of 12 has the same fixed points A000057 as the variant with 1 instead of 12, but other variants (A262212  A262220 and A262211) have different sets of fixed points (A213891  A213899 and this).


LINKS

Table of n, a(n) for n=1..55.


MATHEMATICA

f[m_, n_] := Block[{c, k = 1}, c[x_, y_] := ContinuedFraction[x FromContinuedFraction[Join[{x}, Table[m, {y}], {x}]]]; While[First@ c[n, k] != Last@ c[n, k], k++]; k]; Select[Range[2, 1000], f[12, #] == # &] (* Michael De Vlieger, Sep 16 2015 *)


PROG

(PARI) for(n=2, 9999, n==A262211(n)&&print1(n", "))


CROSSREFS

Cf. A213648, A262212  A262220, A213900, A262211; A000057, A213891  A213899.
Sequence in context: A019360 A269666 A007639 * A168144 A108271 A245585
Adjacent sequences: A261308 A261309 A261310 * A261312 A261313 A261314


KEYWORD

nonn


AUTHOR

M. F. Hasler, Sep 15 2015


STATUS

approved



