login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A099371 G.f.: x/(1 - 9*x - x^2). 21
0, 1, 9, 82, 747, 6805, 61992, 564733, 5144589, 46866034, 426938895, 3889316089, 35430783696, 322766369353, 2940328107873, 26785719340210, 244011802169763, 2222891938868077, 20250039251982456, 184473245206710181 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

a(p) == 85^((p-1)/2)) mod p for odd primes p. - Gary W. Adamson, Feb 22 2009

For more information about this type of recurrence follow the Khovanova link and see A054413, A086902 and A178765. - Johannes W. Meijer, Jun 12 2010

For n >=2, a(n) equals the permanent of the (n-1) X (n-1) tridiagonal matrix with 9's along the main diagonal and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011

For n>=1, a(n) equals the number of words of length n-1 on alphabet {0,1,...,9} avoiding runs of zeros of odd lengths. - Milan Janjic, Jan 28 2015

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

J. H. Han and M. D. Hirschhorn, Another Look at an Amazing Identity of Ramanujan, Mathematics Magazine, Vol. 79 (2006), pp. 302-304. See equation 6 on page 303.

Tanya Khovanova, Recursive Sequences

Index entries for sequences related to Chebyshev polynomials.

Index entries for linear recurrences with constant coefficients, signature (9, 1).

FORMULA

G.f.: x/(1 - 9*x - x^2).

a(n) = 9*a(n-1) + a(n-2), n>=2, a(0)=0, a(1)=1.

a(n) = ((-i)^(n-1))*S(n-1, 9*i) with S(n, x) Chebyshev's polynomials of the second kind (see A049310) and i^2=-1.

a(n) = (ap^n - am^p)/(ap-am) with ap:= (9+sqrt(85))/2 and am:= (9-sqrt(85))/2=-1/ap (Binet form).

a(n) = Sum_{k=0..floor((n-1)/2)} binomial(n-1-k, k)*9^(n-1-2*k) n>=1.

a(n) = F(n, 9), the n-th Fibonacci polynomial evaluated at x=9. - T. D. Noe, Jan 19 2006

a(n) = ((9+sqrt(85))^n-(9-sqrt(85))^n)/(2^n*sqrt(85)). Offset 1. a(3)=82. - Al Hakanson (hawkuu(AT)gmail.com), Jan 12 2009

From Johannes W. Meijer, Jun 12 2010: (Start)

a(2n+2) = 9*A097839(n), a(2n+1) = A097841(n).

a(3n+1) = A041151(5n), a(3n+2) = A041151(5n+3), a(3n+3) = 2*A041151(5n+4).

Limit(a(n+k)/a(k), k=infinity) = (A087798(n) + A099371(n)*sqrt(85))/2.

Limit(A087798(n)/A099371(n), n=infinity) = sqrt(85). (End)

a(n) ~ 1/sqrt(85)*((9+sqrt(85))/2)^n. - Jean-Fran├žois Alcover, Dec 04 2013

a(n) = [1,0] (M^n) [0,1]^T where M is the matrix [9,1; 1,0]. - Robert Israel, Feb 01 2015

MAPLE

F:= gfun:-rectoproc({a(n)=9*a(n-1)+a(n-2), a(0)=0, a(1)=1}, a(n), remember):

seq(F(n), n=0..30); # Robert Israel, Feb 01 2015

MATHEMATICA

CoefficientList[Series[x/(1 - 9*x - x^2), {x, 0, 50}], x] (* G. C. Greubel, Apr 16 2017 *)

PROG

(Sage) from sage.combinat.sloane_functions import recur_gen3 sage: it = recur_gen3(0, 1, 9, 9, 1, 0) sage: [it.next() for i in xrange(1, 22)] /* Zerinvary Lajos, Jul 09 2008 */

(Sage) [lucas_number1(n, 9, -1) for n in xrange(0, 20)] /* Zerinvary Lajos, Apr 26 2009 */

(PARI) Vec(1/(1 - 9*x - x^2)+O(x^99)) \\ Charles R Greathouse IV, Feb 03 2014

CROSSREFS

Cf. A099372 (squares), A099371.

Cf. A243399.

Sequence in context: A288789 A033119 A033127 * A068109 A163460 A081191

Adjacent sequences:  A099368 A099369 A099370 * A099372 A099373 A099374

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Oct 18 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 23 03:42 EDT 2017. Contains 290958 sequences.