OFFSET
0,3
LINKS
Nathaniel Johnston, Table of n, a(n) for n = 0..500
FORMULA
a(n) = Sum_{k=0..floor(n/2)} binomial(3*n-4*k,3*n-6*k).
Conjecture: G.f. ( -1+x+x^3-x^4+2*x^2 ) / ( (x^3-3*x^2+4*x-1)*(x^3+3*x^2+2*x+1) ). - R. J. Mathar, Mar 15 2013
MAPLE
seq(add(binomial(3*n-4*k, 3*n-6*k), k=0..floor(n/2)), n=0..20);
MATHEMATICA
Table[Sum[Binomial[3n-4k, 3n-6k], {k, 0, n/2}], {n, 0, 28}]
PROG
(Maxima) makelist(sum(binomial(3*n-4*k, 3*n-6*k), k, 0, n/2), n, 0, 28);
(PARI) for(n=0, 30, print1(sum(k=0, floor(n/2), binomial(3*n-4*k, 3*n-6*k)), ", ")) \\ G. C. Greubel, Dec 30 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emanuele Munarini, May 05 2011
STATUS
approved