login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A190152
Triangle of binomial coefficients binomial(3*n-k,3*n-3*k).
6
1, 1, 1, 1, 10, 1, 1, 28, 35, 1, 1, 55, 210, 84, 1, 1, 91, 715, 924, 165, 1, 1, 136, 1820, 5005, 3003, 286, 1, 1, 190, 3876, 18564, 24310, 8008, 455, 1, 1, 253, 7315, 54264, 125970, 92378, 18564, 680, 1, 1, 325, 12650, 134596, 490314, 646646, 293930, 38760, 969, 1
OFFSET
0,5
COMMENTS
From R. J. Mathar, Mar 15 2013: (Start)
The matrix inverse starts
1;
-1,1;
9,-10,1;
-288,322,-35,1;
22356,-25003,2730,-84,1;
-3428973,3835026,-418825,12936,-165,1;
914976405,-1023326973,111759115,-3452449,44187,-286,1;
... (End)
LINKS
Nathaniel Johnston, Rows n = 0..100, flattened
EXAMPLE
Triangle begins:
1
1, 1
1, 10, 1
1, 28, 35, 1
1, 55, 210, 84, 1
1, 91, 715, 924, 165, 1
1, 136, 1820, 5005, 3003, 286, 1
1, 190, 3876, 18564, 24310, 8008, 455, 1
1, 253, 7315, 54264, 125970, 92378, 18564, 680, 1
...
MATHEMATICA
Flatten[Table[Binomial[3n - k, 3n - 3k], {n, 0, 9}, {k, 0, n}]]
PROG
(Maxima) create_list(binomial(3*n-k, 3*n-3*k), n, 0, 9, k, 0, n);
(PARI) for(n=0, 10, for(k=0, n, print1(binomial(3*n-k, 3*(n-k)), ", "))) \\ G. C. Greubel, Dec 29 2017
CROSSREFS
Cf. A000447 (first subdiagonal), A053135 (second subdiagonal), A060544 (second column), A190088, A190153 (row sums), A190154 (diagonal sums).
Sequence in context: A159041 A154979 A146765 * A154984 A173047 A173045
KEYWORD
nonn,easy,tabl
AUTHOR
Emanuele Munarini, May 05 2011
STATUS
approved