login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173045
Triangle T(n, k, q) = binomial(n, k) - 1 + q^(n*binomial(n-2, k-1)) with T(n, 0, q) = T(n, n, q) = 1 and q = 3, read by rows.
2
1, 1, 1, 1, 10, 1, 1, 29, 29, 1, 1, 84, 6566, 84, 1, 1, 247, 14348916, 14348916, 247, 1, 1, 734, 282429536495, 150094635296999140, 282429536495, 734, 1, 1, 2193, 50031545098999727, 2503155504993241601315571986085883, 2503155504993241601315571986085883, 50031545098999727, 2193, 1
OFFSET
0,5
FORMULA
T(n, k, q) = binomial(n, k) - 1 + q^(n*binomial(n-2, k-1)) with T(n, 0, q) = T(n, n, q) = 1 and q = 3.
Sum_{k=0..n} T(n, k, 3) = A000295(n) + Sum_{k=0..n} 3^(n*binomial(n-2, k-1)). - G. C. Greubel, Feb 19 2021
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 10, 1;
1, 29, 29, 1;
1, 84, 6566, 84, 1;
1, 247, 14348916, 14348916, 247, 1;
1, 734, 282429536495, 150094635296999140, 282429536495, 734, 1;
MATHEMATICA
T[n_, k_, q_]:= If[k==0 || k==n, 1, Binomial[n, k] - 1 + q^(n*Binomial[n-2, k-1])];
Table[t[n, k, 3], {n, 0, 9}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Feb 19 2021 *)
PROG
(Sage)
def T(n, k, q):
if (k==0 or k==n): return 1
else: return binomial(n, k) -1 +q^(n*binomial(n-2, k-1))
flatten([[T(n, k, 3) for k in (0..n)] for n in (0..9)]) # G. C. Greubel, Feb 19 2021
(Magma)
T:= func< n, k, q | k eq 0 or k eq n select 1 else Binomial(n, k) -1 +q^(n*Binomial(n-2, k-1)) >;
[T(n, k, 3): k in [0..n], n in [0..9]]; // G. C. Greubel, Feb 19 2021
CROSSREFS
Cf. A132044 (q=0), A007318 (q=1), A173043 (q=2), this sequence (q=3).
Cf. A000295.
Sequence in context: A190152 A154984 A173047 * A176491 A008958 A168524
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Feb 08 2010
EXTENSIONS
Edited by G. C. Greubel, Feb 19 2021
STATUS
approved