The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A176491 Triangle T(n,k) = binomial(n,k) + A176490(n,k) - 1 read along rows 0<=k<=n. 2
 1, 1, 1, 1, 10, 1, 1, 35, 35, 1, 1, 104, 300, 104, 1, 1, 297, 1992, 1992, 297, 1, 1, 846, 11747, 25982, 11747, 846, 1, 1, 2431, 64969, 275375, 275375, 64969, 2431, 1, 1, 7060, 346246, 2573576, 4831272, 2573576, 346246, 7060, 1, 1, 20693, 1804214, 22163246 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Row sums are 1, 2, 12, 72, 510, 4580, 51170, 685552, 10685038, 189423852, 3755809002,.... LINKS EXAMPLE 1; 1, 1; 1, 10, 1; 1, 35, 35, 1; 1, 104, 300, 104, 1; 1, 297, 1992, 1992, 297, 1; 1, 846, 11747, 25982, 11747, 846, 1; 1, 2431, 64969, 275375, 275375, 64969, 2431, 1; 1, 7060, 346246, 2573576, 4831272, 2573576, 346246, 7060, 1; 1, 20693, 1804214, 22163246, 70723772, 70723772, 22163246, 1804214, 20693, 1; 1, 61082, 9268821, 180504510, 916661604, 1542816966, 916661604, 180504510, 9268821, 61082, 1; MAPLE A176491 := proc(n, k)         A176490(n, k)+binomial(n, k)-1 ; end proc: # R. J. Mathar, Jun 16 2015 MATHEMATICA (*A060187*) p[x_, n_] = (1 - x)^(n + 1)*Sum[(2*k + 1)^n*x^k, {k, 0, Infinity}]; f[n_, m_] := CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x][[m + 1]]; << DiscreteMath`Combinatorica`; t[n_, m_, 0] := Binomial[n, m]; t[n_, m_, 1] := Eulerian[1 + n, m]; t[n_, m_, 2] := f[n, m]; t[n_, m_, q_] := t[n, m, q] = t[n, m, q - 2] + t[n, m, q - 3] - 1; Table[Flatten[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 0, 10}] CROSSREFS Cf. A007318, A008292, A060187, A176487. Sequence in context: A154984 A173047 A173045 * A008958 A168524 A157277 Adjacent sequences:  A176488 A176489 A176490 * A176492 A176493 A176494 KEYWORD nonn,tabl,easy AUTHOR Roger L. Bagula, Apr 19 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 14 19:20 EDT 2021. Contains 342951 sequences. (Running on oeis4.)