login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176492
Triangle T(n,k) = A176492(n,k) + A008292(n+1,k+1) - 1 read along rows 0<=k<=n.
1
1, 1, 1, 1, 13, 1, 1, 45, 45, 1, 1, 129, 365, 129, 1, 1, 353, 2293, 2293, 353, 1, 1, 965, 12937, 28397, 12937, 965, 1, 1, 2677, 69261, 290993, 290993, 69261, 2677, 1, 1, 7561, 360853, 2661809, 4987461, 2661809, 360853, 7561, 1, 1, 21705, 1852053, 22618437
OFFSET
0,5
COMMENTS
Row sums are 1, 2, 15, 92, 625, 5294, 56203, 725864, 11047909, 193052642, 3795725791,....
EXAMPLE
1;
1, 1;
1, 13, 1;
1, 45, 45, 1;
1, 129, 365, 129, 1;
1, 353, 2293, 2293, 353, 1;
1, 965, 12937, 28397, 12937, 965, 1;
1, 2677, 69261, 290993, 290993, 69261, 2677, 1;
1, 7561, 360853, 2661809, 4987461, 2661809, 360853, 7561, 1;
, 21705, 1852053, 22618437, 72034125, 72034125, 22618437, 1852053, 21705, 1;
1, 63117, 9421457, 182707997, 926399717, 1558541213, 926399717, 182707997, 9421457, 63117, 1;
MAPLE
A176492 := proc(n, k)
A176491(n, k)+A008292(n+1, k+1)-1 ;
end proc: # R. J. Mathar, Jun 16 2015
MATHEMATICA
p[x_, n_] = (1 - x)^(n + 1)*Sum[(2*k + 1)^n*x^k, {k, 0, Infinity}];
f[n_, m_] := CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x][[m + 1]];
<< DiscreteMath`Combinatorica`;
t[n_, m_, 0] := Binomial[n, m];
t[n_, m_, 1] := Eulerian[1 + n, m];
t[n_, m_, 2] := f[n, m];
t[n_, m_, q_] := t[n, m, q] = t[n, m, q - 2] + t[n, m, q - 3] - 1;
Table[Flatten[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 0, 10}]
CROSSREFS
KEYWORD
nonn,tabl,easy
AUTHOR
Roger L. Bagula, Apr 19 2010
STATUS
approved