login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176204
Triangle T(n, k) = 4 * A008292(n+1, k) - 3, read by rows.
1
1, 1, 1, 1, 13, 1, 1, 41, 41, 1, 1, 101, 261, 101, 1, 1, 225, 1205, 1205, 225, 1, 1, 477, 4761, 9661, 4761, 477, 1, 1, 985, 17169, 62473, 62473, 17169, 985, 1, 1, 2005, 58429, 352933, 624757, 352933, 58429, 2005, 1, 1, 4049, 191357, 1820765, 5241413, 5241413, 1820765, 191357, 4049, 1
OFFSET
0,5
COMMENTS
This sequence belongs to the class defined by T(n, m, q) = 2*T(n, m, q-1) - 1. The first few q values gives the sequences: A008292(n+1, k) (q=0), A176200 (q=1), this sequence (q=2).
Row sums are: {1, 2, 15, 84, 465, 2862, 20139, 161256, 1451493, 14515170, 159667167, ...}.
Former title: A recursive symmetrical triangular sequence based on Eulerian numbers: q=2: T(n, m, q) = 2*T(n, m, q-1) - 1.
FORMULA
T(n, m, q) = 2*T(n, m, q-1) - 1, with T(n, m, 0) = A008292(n+1, m).
From G. C. Greubel, Mar 12 2020: (Start)
T(n, k, q) = 2^q * A008292(n+1, k) - (2^q - 1).
Sum_{k=0..n} T(n, k, q) = (n+1)*( 2^q * n! - 2^q + 1) (row sums). (End)
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 13, 1;
1, 41, 41, 1;
1, 101, 261, 101, 1;
1, 225, 1205, 1205, 225, 1;
1, 477, 4761, 9661, 4761, 477, 1;
1, 985, 17169, 62473, 62473, 17169, 985, 1;
1, 2005, 58429, 352933, 624757, 352933, 58429, 2005, 1;
1, 4049, 191357, 1820765, 5241413, 5241413, 1820765, 191357, 4049, 1;
MAPLE
A008292:= (n, k) -> add((-1)^j*binomial(n+1, j)*(k-j+1)^n, j=0..k+1);
A176204:= (n, k, q) -> 2^q*( A008292(n+1, k) -1) + 1;
seq(seq( A176204(n, k, 2), k=0..n), n=0..12); # G. C. Greubel, Mar 12 2020
MATHEMATICA
Eulerian[n_, k_]:= Sum[(-1)^j*Binomial[n+1, j]*(k-j+1)^n, {j, 0, k+1}];
T[n_, m_, q_]:= 2^q*Eulerian[n+1, m] - 2^q +1;
Table[T[n, m, 2], {n, 0, 12}, {m, 0, n}]//Flatten (* modified by G. C. Greubel, Mar 12 2020 *)
PROG
(PARI) Eulerian(n, k) = sum(j=0, k+1, (-1)^j*binomial(n+1, j)*(k-j+1)^n);
T(n, k, q) = 2^q*Eulerian(n+1, k) - (2^q - 1); \\ G. C. Greubel, Mar 12 2020
(Magma) Eulerian:= func< n, k | (&+[(-1)^j*Binomial(n+1, j)*(k-j+1)^n: j in [0..k+1]]) >;
[[4*Eulerian(n+1, k) -3: k in [0..n]]: n in [0..12]]; // G. C. Greubel, Mar 12 2020
(Sage)
def Eulerian(n, k): return sum((-1)^j*binomial(n+1, j)*(k-j+1)^n for j in (0..k+1))
def T(n, k, q): return 2^q*Eulerian(n+1, k) - 2^q + 1
[[T(n, k, 2) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Mar 12 2020
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Apr 11 2010
EXTENSIONS
Edited by G. C. Greubel, Mar 12 2020
STATUS
approved